

Modelamiento de la zona de inundación en el margen del Rio Magdalena en el municipio de Girardot-Cundinamarca.

Rafael Nicolas Diaz Hurtado

Brenda Nayibe Rodríguez Culma

Corporación Universitaria Minuto de Dios

Rectoría Cundinamarca

Sede Girardot (Cundinamarca)

Programa Ingeniería Civil

Noviembre de 2022

Modelamiento de la zona de inundación en el margen del Rio Magdalena en el municipio de Girardot-Cundinamarca.

Rafael Nicolas Diaz Hurtado

Brenda Nayibe Rodríguez Culma

Sistematización presentado como requisito para optar al título de Ingeniero Civil

Asesor(a)

Edgar Orjuela Montoya

Ingeniero Civil Especialista en recursos hídricos

Corporación Universitaria Minuto de Dios

Rectoría Cundinamarca

Sede Girardot (Cundinamarca)

Programa Ingeniería Civil

Noviembre de 2022

Dedicatoria

Este logro es dedicado a Dios, a mis abuelos, mis niñas, a mis ángeles y especialmente a mis padres gracias por estar siempre, por creer en mí, y por hacer de esto algo posible, por dar todo de ustedes para luchar por mis sueños y por estar aquí en la finalización de uno de ellos, feliz de por poder celebrar lo que tantos años deseábamos, sin ustedes nada de esto hubiese sido posible, son mi mayor motor, los amo. A mi novio Nicolas Díaz, gracias por apoyarme y nunca dudar de mí, por tu apoyo y amor incondicional, por hacer parte de mi vida y de la realización de este proyecto, te amo.

Brenda Nayibe Rodríguez Culma.

Primero que todo, este logro es dedicado a Dios que me dio la vida y sabiduría para poder culminar este proyecto, a mis padres y a mis hermanos que siempre me apoyaron y me dieron fuerzas para siempre luchar y nunca desistir por este sueño, sin ellos esto no hubiera sido posible realizar este sueño que se tenía desde que empecé la carrera, fue un sueño que se convirtió en un gran logro gracias a la ayuda de ellos, los amo mucho. También le dedico este logro a mi novia Brenda Rodríguez, siempre me apoyaste y fuiste parte fundamental de este proceso, nunca dudaste de mí y me diste tu amor y apoyo incondicional, te amo.

Rafael Nicolas Diaz Hurtado

Agradecimientos

Primordialmente agradezco a Dios por tomar mi mano, guiarme y regalarme la sabiduría durante la realización de este proyecto y permitirme culminar mis estudios universitarios, a mi familia que son mi motor gracias por estar siempre para mí motivándome y apoyándome incondicionalmente para mi proceso de formación. También agradezco a mi compañero Rafael Nicolas Díaz Hurtado que siempre estuvo presente a aclarar mis dudas dadas durante la realización de este, fue parte fundamental de la realización de este proyecto grado, dando un aporte para la culminación de este.

Doy las gracias al docente Edgar Orjuela Montoya por apoyarme durante la realización de este proyecto, ya que sin sus conocimientos aportados no hubiera sido posible.

Brenda Nayibe Rodríguez Culma.

Primeramente y más importante darle las gracias a Dios que me dio la vida, la salud y la sabiduría necesaria para poder terminar este gran logro, igualmente a mis padres y mis hermanos, gracias y muchas gracias por siempre estar al pendiente de mí y darme todo el apoyo que necesite durante mi carrera, por siempre desearme lo mejor y hacer de esto posible. A mi compañera Brenda Rodríguez, gracias y mil gracias por darme el apoyo que necesite para poder hacer realidad este sueño, por los conocimientos y ayudas que me brindo durante la realización de este trabajo y por nunca dejarme solo, fue parte fundamental y siendo clave para la culminación de este. Por último, doy las gracias al Ingeniero Edgar Orjuela, tutor de este proyecto, que siempre estuvo presente y siempre nos brindó una mano otorgándonos todos sus conocimientos y experiencias para poder realizar y culminar esta investigación.

Rafael Nicolas Diaz Hurtado

Contenido

Lista de figuras
Lista de anexos
1. RESUMEN16
2. ABSTRACT
3. INTRODUCCIÓN18
4. PLANTEAMIENTO DEL PROBLEMA
5. JUSTIFICACIÓN
6. OBJETIVOS
6.1 OBJETIVO GENERAL 22
6.2 OBJETIVOS ESPECÍFICOS
7. LOCALIZACION GEOGRAFICA DEL PROYECTO
8. ALCANCE24
9. LIMITACIONES
10. MARCO DE REFERENCIAL
10.1 MARCO HISTORICO
10.1.1 MODELAMIENTO DE ZONAS DE INUNDACIÓN POR MEDIO DE LAS
HERRAMIENTAS HEC-RAS, GEO-RAS Y ARCGIS, PARA EL SECTOR COMPRENDIDO
ENTRE LOS MUNICIPIOS DE CORRALES- PAZ DE RIO A LO LARGO DEL RIO
CHICAMOCHA, EN EL DEPARTAMENTO DE BOYACÁ (Mora Mariño & Ochoa Guerrero,
2016):

10.1.2	SISTEMA DE MONITOREO Y CONTROL DE ALERTA TEMPRANA DEL
DESBOI	RDAMIENTO DE UN RIO (SIALTERI) (Dorado Melo, 2020):27
10.1.3	MODELACIÓN HIDROLÓGICA PARA EL ESTUDIO DE INUNDACIÓN, EN EL
DEPART	ΓΑΜΈΝΤΟ DE CUNDINAMARCA, DEL RÍO FRÍO A LA ALTURA DEL
MUNICI	IPIO DE CHIA (Torres Quintana, 2017):
10.1.4	GEOMORFOLOGÍA E HIDROLOGÍA, COMBINACIÓN ESTRATÉGICA PARA
EL ESTU	UDIO DE LAS INUNDACIONES EN FLORENCIA (CAQUETÁ) (Hortua Cortés,
2004):	
10.1.5	SITIOS DE INUNDACIONES CAUSADAS POR LOS RÍOS LA VEGA Y JORDÁN,
TUNJA	(BOYACA) (Perico-Grandos, y otros, 2021):
10.2 M	IARCO CONCEPTUAL30
10.3 M	IARCO TEORICO32
10.3.1	INUNDACIONES: 34
10.3.2	ESTUDIO HIDROLÓGICO:
11. ME	TODOLOGÍA3′
11.1 M	ETODOLOGÍA DE INVESTIGACIÓN:37
11.2 M	IETODOLOGÍA DE DESARROLLO:37
12. RES	SULTADOS39
13. CON	NCLUSIÓN5′
14. REF	FERENCIAS59
15 Δ NI	EXOS 6

Lista de tablas

Tabla 1. Histórico de caudales mínimos de 1960 a 1980 de la estación Arrancaplumas, municipio de Guaduas.

Fuente propia.

Tabla 2. Histórico de caudales mínimos de 1981 a 2000 de la estación Arrancaplumas, municipio de Guaduas.

Tabla 4. Histórico de caudales mínimos de 1978 a 1998 de la estación Automática de Nariño, municipio de Nariño.

Tabla 5. Histórico de caudales mínimos de 1999 a 2015 de la estación Automática de Nariño, municipio de Nariño.

Tabla 6. Histórico de caudales mínimos del 2015 al 2021 de la estación Automática de Nariño, municipio de Nariño.

Tabla 7. Histórico de caudales mínimos de 1960 a 1980 de la estación Automática de Purificación, municipio de purificación.

Tabla 8. Histórico de caudales mínimos de 1981 a 2000 de la estación Automática de Purificación, municipio de purificación.

Tabla 9. Histórico de caudales mínimos del 2001 al 2021 de la estación Automática de Purificación, municipio de purificación.

Tabla 10. Histórico de caudales mínimos de 1975 a 1995 de la estación Angostura Automática, municipio de Natagaima.

Tabla 11. Histórico de caudales mínimos de 1996 al 2021 de la estación Angostura Automática, municipio de Natagaima.

Tabla 12. Histórico de caudales mínimos de 1960 a 1980 de la estación Puente Santander, municipio de Neiva.

Tabla 13. Histórico de caudales mínimos de 1981 a 2000 de la estación Puente Santander, municipio de Neiva.

Tabla 14. Histórico de caudales mínimos de 2001 a 2022 de la estación Puente Santander, municipio de Neiva. Tabla 15. Histórico de caudales máximos de 1960 a 1979 de la estación Arrancaplumas, municipio de Guaduas.

Tabla 16. Histórico de caudales máximos de 1980 a 1999 de la estación Arrancaplumas, municipio de Guaduas.

Tabla 17. Histórico de caudales máximos del 2000 al 2014 de la estación Arrancaplumas, municipio de Guaduas.

Tabla 18. Histórico de caudales máximo de 1978 a 1997 de la estación Automática de Nariño, municipio de Nariño.

Tabla 19. Histórico de caudales máximo de 1998 a 2017 de la estación Automática de Nariño, municipio de Nariño.

Tabla 20. Histórico de caudales máximo de 2018 a 2021 de la estación Automática de Nariño, municipio de Nariño.

Tabla 21. Histórico de caudales máximos de 1960 a 1979 de la estación Automática de Purificación, municipio de purificación.

Tabla 22. Histórico de caudales máximos de 1980 a 1999 de la estación Automática de Purificación, municipio de purificación.

Tabla 23. Histórico de caudales máximos de 2000 a 2010 de la estación Automática de Purificación, municipio de purificación.

Tabla 24. Histórico de caudales máximos del 2011 al 2020 de la estación Automática de Purificación, municipio de purificación.

Tabla 25. Histórico de caudales mínimos de 1961 a 1980 de la estación Puente Santander, municipio de Neiva.

Tabla 26. Histórico de caudales mínimos de 1981 a 2000 de la estación Puente Santander, municipio de Neiva.

Tabla 27. Histórico de caudales mínimos de 2001 a 2000 de la estación Puente Santander, municipio de Neiva.

Tabla 28. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Máximos. 1 dato faltante.

Tabla 29. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Máximos. 3 datos faltantes.

Tabla 30. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Máximos. 2 datos faltantes.

Tabla 31. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Mínimos. 1 dato faltante.

Tabla 32. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Mínimos. 3 datos faltantes.

Tabla 33. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Mínimos. 2 datos faltantes.

Lista de figuras

Ilustración 1. Historico de caudales minimos de la estación Arrancapiumas, municipio de
Guaduas40
Ilustración 2. Histórico de caudales mínimos de la estación Automática de Nariño, municipio de
Nariño
Ilustración 3. Histórico de caudales mínimos de la estación Automática de Purificación,
municipio de purificación
Ilustración 4. Histórico de caudales mínimos de la estación Angostura Automática, municipio de
Natagaima
Ilustración 5. Histórico de caudales mínimos de la estación Puente Santander, municipio de
Neiva41
Ilustración 6. Histórico de caudales máximos de la estación Arrancaplumas, municipio de
Guaduas41
Ilustración 7. Histórico de caudales máximos de la estación Automática de Nariño, municipio de
Nariño
Ilustración 8. Histórico de caudales máximos de la estación Automática de Purificación,
municipio de Purificación
Ilustración 9. Histórico de caudales máximos de la estación Angostura Automática, municipio de
Natagaima
Ilustración 10. Histórico de caudales máximos de la estación Puente Santander, municipio de
Neiva. 43
Ilustración 11. Histograma de máximos y mínimos

Ilustración 12. Batimetría del Río Magdalena y secciones de perfil para modelamiento en Hec-
Ras
Ilustración 13. Ejemplos de las 113 secciones que se dibujaron en las curvas de nivel45
Ilustración 14. Geometría de las secciones en Hec-Ras
Ilustración 15. Sección del Río Magdalena con caudal mínimo (58m³/s)47
Ilustración 16. Sección del Río Magdalena con caudal máximo (5435m³/s)
Ilustración 17. Cálculo de los periodos de retorno
Ilustración 18. Grafica de los periodos de retorno
Ilustración 19. Cálculo de los caudales para los periodos de retorno
Ilustración 20. Sección del Río Magdalena con caudal para periodo de retorno de 10 años
(7133,7m³/s)49
Ilustración 21. Sección del Río Magdalena con caudal para periodo de retorno de 25 años
(12523,5m³/s)50
Ilustración 22. Sección del Río Magdalena con caudal para periodo de retorno de 50 años
(21506,5m³/s)50
Ilustración 23. Sección del Río Magdalena con caudal para periodo de retorno de 100 años
(39472,5m³/s)51
Ilustración 24. Marco del sector a trabajar de la Grilla 1:25000 de Colombia
Ilustración 25. Curvas de nivel, imagen georeferenciada de Girardot y el Río Magdalena y DEM
en 2D
Ilustración 26. DEM en 3D. 53
Ilustración 27. Imagen en 3D
Ilustración 28. Huella de inundación con el caudal máximo de entrada (5435m³/s)

Ilustración 29. Huella de inundación con caudal con periodo de retorno para 10 años	
(7133,7m³/s)	54
Ilustración 30. Huella de inundación con caudal con periodo de retorno para 25 años	
(12523,5m ³ /s)	55
Ilustración 31. Huella de inundación con caudal con periodo de retorno para 50 años	
(21506,5m ³ /s)	55
Ilustración 32. Huella de inundación con caudal con periodo de retorno para 100 años	
(39472,5m³/s)	56

Lista de anexos

Tabla 1. Histórico de caudales mínimos de 1960 a 1980 de la estación Arrancaplumas, municipio de Guaduas.

Fuente propia.

Tabla 2. Histórico de caudales mínimos de 1981 a 2000 de la estación Arrancaplumas, municipio de Guaduas.

Tabla 4. Histórico de caudales mínimos de 1978 a 1998 de la estación Automática de Nariño, municipio de Nariño.

Tabla 5. Histórico de caudales mínimos de 1999 a 2015 de la estación Automática de Nariño, municipio de Nariño.

Tabla 6. Histórico de caudales mínimos del 2015 al 2021 de la estación Automática de Nariño, municipio de Nariño.

Tabla 7. Histórico de caudales mínimos de 1960 a 1980 de la estación Automática de Purificación, municipio de purificación.

Tabla 8. Histórico de caudales mínimos de 1981 a 2000 de la estación Automática de Purificación, municipio de purificación.

Tabla 9. Histórico de caudales mínimos del 2001 al 2021 de la estación Automática de Purificación, municipio de purificación.

Tabla 10. Histórico de caudales mínimos de 1975 a 1995 de la estación Angostura Automática, municipio de Natagaima.

Tabla 11. Histórico de caudales mínimos de 1996 al 2021 de la estación Angostura Automática, municipio de Natagaima.

Tabla 12. Histórico de caudales mínimos de 1960 a 1980 de la estación Puente Santander, municipio de Neiva.

Tabla 13. Histórico de caudales mínimos de 1981 a 2000 de la estación Puente Santander, municipio de Neiva.

Tabla 14. Histórico de caudales mínimos de 2001 a 2022 de la estación Puente Santander, municipio de Neiva. Tabla 15. Histórico de caudales máximos de 1960 a 1979 de la estación Arrancaplumas, municipio de Guaduas.

Tabla 16. Histórico de caudales máximos de 1980 a 1999 de la estación Arrancaplumas, municipio de Guaduas.

Tabla 17. Histórico de caudales máximos del 2000 al 2014 de la estación Arrancaplumas, municipio de Guaduas.

Tabla 18. Histórico de caudales máximo de 1978 a 1997 de la estación Automática de Nariño, municipio de Nariño.

Tabla 19. Histórico de caudales máximo de 1998 a 2017 de la estación Automática de Nariño, municipio de Nariño.

Tabla 20. Histórico de caudales máximo de 2018 a 2021 de la estación Automática de Nariño, municipio de Nariño.

Tabla 21. Histórico de caudales máximos de 1960 a 1979 de la estación Automática de Purificación, municipio de purificación.

Tabla 22. Histórico de caudales máximos de 1980 a 1999 de la estación Automática de Purificación, municipio de purificación.

Tabla 23. Histórico de caudales máximos de 2000 a 2010 de la estación Automática de Purificación, municipio de purificación.

Tabla 24. Histórico de caudales máximos del 2011 al 2020 de la estación Automática de Purificación, municipio de purificación.

Tabla 25. Histórico de caudales mínimos de 1961 a 1980 de la estación Puente Santander, municipio de Neiva.

Tabla 26. Histórico de caudales mínimos de 1981 a 2000 de la estación Puente Santander, municipio de Neiva.

Tabla 27. Histórico de caudales mínimos de 2001 a 2000 de la estación Puente Santander, municipio de Neiva.

Tabla 28. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Máximos. 1 dato faltante.

Tabla 29. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Máximos. 3 datos faltantes.

Tabla 30. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Máximos. 2 datos faltantes.

Tabla 31. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Mínimos. 1 dato faltante.

Tabla 32. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Mínimos. 3 datos faltantes.

Tabla 33. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Mínimos. 2 datos faltantes.

1. RESUMEN

El trabajo de investigación "Modelamiento de la zona de inundación en el margen del Rio Magdalena en el municipio de Girardot-Cundinamarca" tiene como fin determinar las posibles zonas de inundación para la comunidad rivereña, y así evitar que sufran de daños personales y materiales a causa de los desastres naturales, se modelo una huella de inundación, realizando un análisis de los caudales históricos del rio magdalena de las estaciones más cerca a Girardot, tales como, Neiva, Natagaima, Purificación, Nariño y Guaduas, después de obtener estos datos de la plataforma del IDEAM, se procede a hacer una cuantificación por el método Estocástico y con las fórmulas de cálculo de datos faltantes por promedios para series Determinísticas, una vez teniendo las tablas completas, se realizó un histograma para tener más clara la variación de las cinco estaciones ya que por medio de HEC-RAS se modelo la batimetría del rio que fue facilitada por la empresa SAP agregados, y con los caudales históricos se pudieron hallar los caudales para los periodos de retorno para 10, 25, 50 y 100 años, luego se procedió a modelar esa información a HEC-RAS para saber la cota de la lámina de dichos caudales, por medio de la plataforma de Colombia en Mapas, Google Earth Pro y Grilla de 1:25000 de Colombia, se buscó que marco servía para el sitio a desarrollar, que fue en el municipio de Girardot en el rio magdalena, se descargó y se extrajeron las curvas de nivel para desarrollar en ArcGIS el modelo digital de elevación en 2D, ese modelo se pasó a ArcScene se digito a 3D al igual que la imagen descargada de la grilla y se calcularon la zona de inundación con las cotas ya establecidas en HEC-RAS.

Palabras claves: DEM, Modelo, Río, Rivera, Huella de inundación, Curvas de Nivel, Caudal, IDEAM.

2. ABSTRACT

The research work "Modeling of the flood zone on the banks of the Magdalena River in the municipality of Girardot-Cundinamarca" aims to determine the possible flood zones for the river community, and thus prevent them from suffering personal and material damage to cause of natural disasters, a flood footprint was modeled, performing an analysis of the historical flows of the Magdalena River from the stations closest to Girardot, such as Neiva, Natagaima, Purificación, Nariño and Guaduas, after obtaining these data from the IDEAM platform, a quantification is made by the Stochastic method and with the formulas for calculating the missing data by averages for Deterministic series, once having the complete tables, a histogram was made to have a clearer view of the variation of the five stations since through HEC-RAS the bathymetry of the river was modeled, which was provided by the company SAP aggregates, and with the historical flows s it was possible to find the flows for the return periods for 10, 25, 50 and 100 years, then proceeded to model that information to HEC-RAS to know the level of the lamina of said flows, through the platform of Colombia in Maps, Google Earth Pro and Grid of 1:25000 of Colombia, it was found which framework was used for the site to be developed, which was in the municipality of Girardot on the Magdalena River, it was downloaded and the contour lines were extracted to develop in ArcGIS the digital elevation model in 2D, that model was transferred to ArcScene, it was digitized in 3D as well as the image downloaded from the grid and the flood zone was calculated with the heights already established in HEC-RAS.

Key Words: DEM, Model, River, Riverside, Flood Footprint, Contour Lines, Flow, IDEAM.

3. INTRODUCCIÓN

El municipio de Girardot Cundinamarca se encuentra ubicado en la zona de la cuenca media del rio magdalena, en donde las temporadas de lluvias y/o invernales afectan a los habitantes de la rivera, generando desastres con la subida del caudal sin ellos poder hacer algo y sin el conocimiento del manejo de estas situaciones de emergencia o algo que les brinde esta ayuda. Sin embargo, tanto o más importante que contar con esa competencia, es poder tener a la mano estrategias o instrumentos, no solamente los habitantes sino también el personal pertinente y encargado de estas situaciones, que reduzcan esas situaciones de emergencia verdaderamente sobrevinientes e imprevisibles.

A lo largo de los años el desbordamiento de los ríos ha causado muchos desastres y daños en la infraestructura de las viviendas cerca de la rivera de los ríos, ya que no existe una plataforma donde se pueda obtener la información en tiempo real sobre el comportamiento de dicho afluente, para así poder estar pendiente de sus variaciones para poder tener respuesta de este problema que afecta a millones de personas cada año.

Por otro lado, con el aumento de la intensidad de los ciclos de lluvia que ha vivido Colombia durante los últimos años, se han presentado inundaciones en diferentes zonas rivereñas e incluso en zonas aledañas a influentes secundarios (SSH, 2011). Esto ha producido grandes daños materiales y muchas pérdidas de vida por lo que se ha requerido la intervención de los diferentes niveles de la administración pública y autoridades competentes en el área para el manejo de las situaciones de emergencia que se han presentado (SSH, 2011). El municipio de Girardot, ubicado en el punto de unión de dos ríos de los mas importantes del país como son el Río Magdalena y el Bogotá, ha sido una de las poblaciones que más ha resultado más afectada por estos fenómenos naturales (SSH, 2011). De acuerdo con la Sala de Situación Humanitaria,

los departamentos con mayor número de personas afectadas y de viviendas averiadas en diciembre de 2011 fueron Bogotá, Risaralda, Córdoba, Cundinamarca y Magdalena (SSH, 2011).

Es por lo que con el presente trabajo se busca evitar estos desastres, identificando las zonas más vulnerables por medio de la huella de inundación, y así poder alertar a los habitantes de estas zonas, además el modelamiento puede ser un insumo importante para base para el diseño de un sistema de alerta temprana (SAT) ante inundaciones con el que se pueden prevenir afectaciones humanas, y donde además se puedan mejorar los tiempos de respuesta del cuerpo de control de emergencias de este municipio.

4. PLANTEAMIENTO DEL PROBLEMA

El Rio Magdalena es conocido como uno de los más grandes del país, recorriendo gran parte del él y con una longitud de más de 1500 kilómetros, en donde desembocan otros ríos grandes, pero de menor magnitud, donde un claro ejemplo es el Rio Bogotá que se une sobre la ciudad de Girardot.

Por otro lado, en temporadas de lluvia el caudal de este afluente se crece generando afectaciones y desastres a las personas que habitan la rivera de este.

Como lo dice (Torres Quintana, 2017) "...estas inundaciones producen arrastre de sólidos, extensas áreas cubiertas por agua, intensa erosión, proliferación de microorganismos, viviendas dañadas, interrupción de vías de comunicación, pérdida de vidas, pérdidas de cosechas, depósito de sedimentos, etc. (Torres Quintana, 2017)."

Caso que sucede en el municipio, el cual no cuenta con algún sistema de alerta que ayude a prevenir y evacuar las zonas más vulnerables ante los desastres provocados por el desbordamiento del Rio, y por esto necesario el modelamiento de la huella de inundación en este sector, para primero poder identificar las zonas más afectadas, y segundo para lograr evacuar con mayor tiempo y así mismo prevenir grandes desastres y cuidar la vida de estos habitantes.

Por tanto, durante esta investigación se dará respuesta a la siguiente pregunta:

¿Cómo identificar las zonas de inundación en la rivera del Rio Magdalena sector del municipio de Girardot?

5. JUSTIFICACIÓN

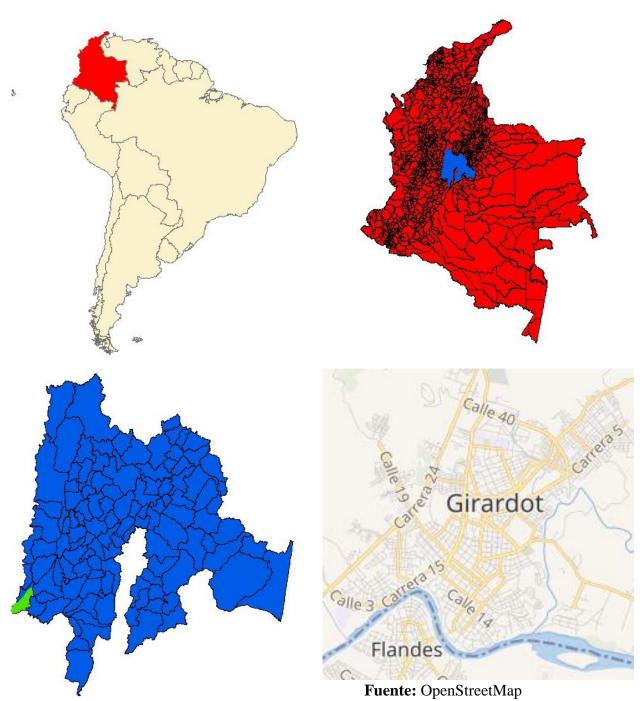
Se justifica el presente en dos diferentes aspectos, el primero hacia el lado social, que va dirigido a las personas que habitan las zonas afectadas, y el segundo aspecto se compone de toda la investigación que se realizó para poder llegar a la entrega final realizando el modelamiento de la huella de inundación donde se definen las áreas afectadas y así los habitantes que se ven y se verán afectados por futuras crecidas del caudal.

En el lado social, viendo todas las tragedias que se producen en las temporadas de lluvias, se vio en la necesidad de identificar las zonas y con ello los habitantes de la rivera del rio en el margen de la ciudad de Girardot, y logrando así con la huella aportar a las autoridades municipales una ayuda para poder prevenir y con esto mitigar este fenómeno natural de inundación.

Por el otro lado, debido a las numerosas inundaciones que se generan con las temporadas invernales se hace la necesidad de implementar ayudas a la mitigación de estos desastres, donde con el presente proyecto se pueden dejar bases para futuras investigaciones y precedentes que permitan generar mejores resultados y con ello poder disminuir las afectaciones a la población rivereña del rio.

El análisis de las inundaciones urbanas es de vital importancia, porque se pueden encontrar alternativas para mitigar los impactos generados y tratar de evitar pérdidas humanas y materiales. Bajo este contexto, surge el interés de identificar las zonas comprometidas en la huella de inundación sobre el margen del rio magdalena a la altura del municipio de Girardot Cundinamarca para generar un punto de partida para el desarrollo de sistemas de alerta y el monitoreo constante se reduce el tiempo de respuesta en el momento en que se presente una emergencia.

6. OBJETIVOS


6.1 OBJETIVO GENERAL

 Realizar un modelamiento de las zonas de inundación en el margen del Rio Magdalena en el municipio de Girardot, en el departamento de Cundinamarca por medio de las herramientas SIG.

6.2 OBJETIVOS ESPECÍFICOS

- Generar el histograma de caudales máximos y mínimos.
- Procesar la información en software especializado en el tratamiento de información geográfica (SIG).
- Generar cartografía de la zona de estudio.

7. LOCALIZACION GEOGRAFICA DEL PROYECTO

Coordenadas Geográficas Girardot: 4°18′13″N 74°48′14″O

8. ALCANCE

El presente proyecto hará un análisis hidráulico sobre el comportamiento del caudal del rio magdalena, usando herramientas de modelamiento de la SIG, que producirá una huella de inundación a escala 1:25000, el cual estará a disposición del municipio de Girardot para la actualización del POT (plan de ordenamiento territorial) y como base poder prevenir y mitigar este fenómeno natural de inundación.

9. LIMITACIONES

El presente proyecto se ve afectado por diferentes condiciones, como lo son:

- La calidad y falta de datos extraídos del IDEAM.
- Poca información batimétrica del Rio Magdalena en el sector de estudio.
- Poca variación del espacio que afecta la efectividad de las aplicaciones.

10. MARCO DE REFERENCIAL

10.1 MARCO HISTORICO

10.1.1 MODELAMIENTO DE ZONAS DE INUNDACIÓN POR MEDIO DE LAS
HERRAMIENTAS HEC-RAS, GEO-RAS Y ARCGIS, PARA EL SECTOR
COMPRENDIDO ENTRE LOS MUNICIPIOS DE CORRALES- PAZ DE RIO
A LO LARGO DEL RIO CHICAMOCHA, EN EL DEPARTAMENTO DE
BOYACÁ (Mora Mariño & Ochoa Guerrero, 2016):

Los fenómenos climáticos son un factor principal en la modelación y continua transformación de la superficie terrestre, estos dependiendo de cada región afectan de manera diferente y traen consecuencias nefastas en el desarrollo de una localidad según su intensidad y duración (Mora Mariño & Ochoa Guerrero, 2016). Las inundaciones son unos de los riesgos naturales que producen mayor número de pérdidas tanto humanas como materiales (Mora Mariño & Ochoa Guerrero, 2016). Este estudio, se focaliza precisamente sobre el fenómeno de las inundaciones, el cual ha sido recurrente, debido a altas precipitaciones como factor detonante (Mora Mariño & Ochoa Guerrero, 2016). El recurso hídrico, es esencial para todos los seres vivos y su dinámica se convierte en una fuerza importante que nos ofrece constantemente grandes beneficios, aunque existen momentos y sitios en los cuales se pueden generar inundaciones con impactos adversos que traen como consecuencias pérdidas económicas, ambientales y sociales en las poblaciones ubicadas próximas a los ríos (Mora Mariño & Ochoa Guerrero, 2016). El sector de los municipios de Corrales y Paz del Rio, en el río Chicamocha, Departamento de Boyacá, ha sido afectado periódicamente por inundaciones, por lo que se hace

necesario contar con información que satisfaga la necesidad de dar predicciones del riesgo asociado a esta amenaza hidrológica (Mora Mariño y Ochoa Guerrero, 2016).

10.1.2 SISTEMA DE MONITOREO Y CONTROL DE ALERTA TEMPRANA DEL DESBORDAMIENTO DE UN RIO (SIALTERI) (Dorado Melo, 2020):

A lo largo de los años el desbordamiento de los ríos ha causado muchos desastres, ocasionando muertes o daños en la infraestructura de las viviendas, de las personas que tienen sus viviendas cerca de la fuente hídrica, ya que no existe una plataforma o aplicación donde se pueda obtener la información en tiempo real sobre el comportamiento de dicho afluente, para así poder estar al pendiente de sus cambios con el fin de tener una respuesta efectiva para este problema que afecta a millones de personas cada año (Dorado Melo, 2020). Con este proyecto se busca que las personas puedan dar seguimiento a las fuentes hídricas con amenaza de desbordamiento periódico, para que puedan tener más tiempo para reaccionar ante este tipo de situaciones y elaborar un plan de contingencia, con el fin de que logren evitar el peligro y puedan ponerse a salvo (Dorado Melo, 2020). En el presente proyecto se podrán visualizar los diferentes factores que intervienen en un rio, como lo son la profundidad, temperatura y caudal. Además de poder ver las grafías de cada una de estas variables y recibir alertas tempranas por si se excede el cauce del afluente que se está censando (Dorado Melo, 2020).

10.1.3 MODELACIÓN HIDROLÓGICA PARA EL ESTUDIO DE INUNDACIÓN, EN EL DEPARTAMENTO DE CUNDINAMARCA, DEL RÍO FRÍO A LA ALTURA DEL MUNICIPIO DE CHIA (Torres Quintana, 2017):

Las inundaciones son fenómenos extremos que provocan cientos de pérdidas tanto humanas como materiales, es por esto por lo que cada vez se buscan más herramientas que faciliten su estudio y análisis (Torres Quintana, 2017). En este documento se realiza una

modelación hidrológica para el estudio de inundación en el municipio de Chía, pues este municipio es propenso a sufrir inundaciones debido a que limita con el Río Frío y en épocas de invierno tiende a subir los niveles de agua desbordándose y provocando inundaciones (Torres Quintana, 2017). Con base en lo anterior es necesario realizar una modelación hidrológica para el estudio de inundación, en el departamento de Cundinamarca, del río frío y localizar las áreas propensas a las inundaciones (Torres Quintana, 2017). Se emplea información cartográfica con el fin de delimitar las cuencas en la zona del proyecto. Se utilizan datos de caudales en la estación Pte. Virginia ubicada en el Río Frío. A los registros históricos se le ajusta a una función de densidad de probabilidad, con el fin de obtener probabilidades y frecuencias (Torres Quintana, 2017). Una vez se realiza el ajuste a de los datos con las funciones paramétricas Gumbel y Pearson III, se calculan los caudales máximos para periodos de retorno 2.33, 5, 10, 20, 50, y 100 años (Torres Quintana, 2017). Luego de ello se realiza una transposición de caudales recomendado por el Manual de Drenaje del INVIAS, que relaciona el área de la cuenca con información en este caso el caudal, con área de la cuenca que no posee información (Torres Quintana, 2017). Ya teniendo caudales en la cabecera del Río Frío se da inicio a la modelación, mediante la herramienta HEC-RAS, versión 4.1 (Torres Quintana, 2017). Primero, se genera un Modelo Digital de Terreno, (DEM) con ayuda del Software ArcGIS 10.1 (Torres Quintana, 2017). Se genera el eje del río, las bancas y las secciones transversales, según el DEM. En HEC-RAS se realiza la modelación hidráulica, es decir se obtienen resultados como el perfil de flujo, láminas de agua y numero de Froude (Torres Quintana, 2017). Luego de ello, se exportan resultados hidráulicos al programa ArcGIS 10.1, y este se encarga de dibujar los polígonos de inundación, con periodos de retorno (Torres Quintana, 2017). En el documento solo se presentan los mapas de inundación para los periodos de retorno de 50 y 100 años, pues son los más críticos (Torres Quintana, 2017).

10.1.4 GEOMORFOLOGÍA E HIDROLOGÍA, COMBINACIÓN ESTRATÉGICA PARA EL ESTUDIO DE LAS INUNDACIONES EN FLORENCIA (CAQUETÁ) (Hortua Cortés, 2004):

En Colombia muchas poblaciones están asentadas en zonas de piedemonte en inmediaciones de ríos torrenciales y expuestas constantemente a inundaciones súbitas (Hortua Cortés, 2004). Florencia, ciudad capital del departamento del Caquetá, es una de ellas (Hortua Cortés, 2004). Por tanto, se vio la necesidad de estudiar esta ciudad que recurrentemente es escenario de inundaciones cobrando casi siempre vidas humanas (Hortua Cortés, 2004). Florencia se ubica en el piedemonte de la vertiente oriental de la cordillera Oriental, caracterizada por alta precipitación, producto de procesos convectivos y orográficos (Hortua Cortés, 2004). Para el estudio de la amenaza por inundación en la ciudad, se integró la información histórica, hidrometeorológica y geomorfológica, mediante el uso de series hidrológicas e interpretación de geoformas fluviales con imágenes de satélite, fotografías aéreas y validación en campo (Hortua Cortés, 2004). Adicionalmente se realizó un estudio regional de la cuenca hidrográfica para determinar la torrencialidad del río Hacha, que bordea la ciudad, y al cual desembocan varias quebradas que también han generado inundaciones súbitas (Hortua Cortés, 2004). Esta información es procesada y analizada para realizar cartografía urbana en donde se zonifican áreas de susceptibilidad y amenaza (Hortua Cortés, 2004).

10.1.5 SITIOS DE INUNDACIONES CAUSADAS POR LOS RÍOS LA VEGA Y JORDÁN, TUNJA (BOYACA) (Perico-Grandos y otros, 2021):

Con base en las investigaciones tituladas "Modelización hidrodinámica para identificación de zonas inundables en la ciudad de Tunja" y "Diagnóstico de las zonas de inundación de los ríos Jordán y La Vega en el casco urbano dela ciudad de Tunja", se analizaron los resultados obtenidos en cada una, con respecto a los escenarios de inundación provocados por los dos ríos, se hizo un análisis de los desbordamientos, se revisaron las propuestas de diques y se hizo una reflexión al respecto (Perico-Grandos y otros, 2021).

10.2 MARCO CONCEPTUAL

Cartografía: La cartografía es la ciencia que se encarga del estudio y de la elaboración de mapas para poder representar grandes extensiones del territorio o su totalidad, buscando una relación matemática en la que las deformaciones sean reconocibles (Casanova et al., 2012).

Cauce: es la concavidad del terreno, natural o artificial, por donde corre el curso de un río, un canal o cualquier corriente de agua (Universidad de los Andes Venezuela, 2017).

Caudal: Podemos definir el caudal como la cantidad de agua (en litros) por minuto. Además, en dinámica de fluidos, caudal es la cantidad de fluido que circula a través de una sección del ducto (tubería, cañería, oleoducto, río, canal, por unidad de tiempo (mbelenyu, 2018). Normalmente se identifica con el flujo volumétrico o volumen que pasa por un área dada en la unidad de tiempo (mbelenyu, 2018).

Cuenca: Una cuenca hidrográfica es un territorio drenado por un único sistema de drenaje natura (Universidad de los Andes Venezuela, 2017).

Curva IDF: Las curvas IDF son la representación gráfica de la relación que existe entre la intensidad y la duración de un evento máximo de lluvia, asociado a la frecuencia o periodo de retorno, donde para cada periodo de retorno se tiene una curva diferente (Nanía, 2002).

Curvas de nivel: Son líneas que, en un mapa, unen puntos de la misma altitud, por encima o por debajo de una superficie de referencia, que generalmente coincide con la línea del nivel del mar, y tiene el fin de mostrar el relieve de un terreno (Navarro Hudiel, 2008). Las curvas de nivel son uno de los variados métodos que se utilizan para reflejar la forma tridimensional de la superficie terrestre en un mapa bidimensional (Navarro Hudiel, 2008). En los modernos mapas topográficos es muy frecuente su utilización, ya que proporcionan información cuantitativa (Navarro Hudiel, 2008).

Damnificado: Que ha sufrido grave daño de carácter colectivo (Real Academia Española).

DEM (**Modelo digital de elevación**): Un modelo digital de elevación es una representación visual y matemática de los valores de altura con respecto al nivel medio del mar, que permite caracterizar las formas del relieve y los elementos u objetos presentes en el mismo (ENEGI, s.f.). Estos valores están contenidos en un archivo de tipo ráster con estructura regular, el cual se genera utilizando equipo de cómputo y software especializados (ENEGI, s.f.).

Estación limnigráficas: Estación donde se mide el nivel de una corriente hídrica mediante un aparato registrador de nivel y que grafica una curva llamada limnigrama (IDEAM, 2019).

Estación limnimetrica: Estación donde se mide el nivel de una corriente hídrica mediante un aparato (mira dividida en centímetros) que mide altura del agua, sin registrarla (IDEAM, 2019). Una persona toma el dato y lo registra en una libreta (IDEAM, 2019).

Estación meteorológica: Estación instalada para realizar seguimiento a un fenómeno o un fin específico, por ejemplo, las heladas (IDEAM, 2019)

Fenómeno del niño: El Fenómeno de "el Niño" es un evento climático que se genera cada cierto número de años por el calentamiento del océano Pacífico. Sus efectos se producen sobre todo en el norte de la región Pacífica, en los departamentos de la región Andina y en los de la región Caribe (IDEAM).

Fenómeno de la niña: El efecto de "La Niña" en nuestro país se distingue por un aumento masque notable en las precipitaciones (anomalías positivas) y en un descenso de las temperaturas (anomalías negativas) en las regiones Andina, Caribe y Pacífica, así como en los sectores del piedemonte de los Llanos orientales, mientras que en la zona oriental (Orinoquía y Amazonía), estas variables tienden a comportarse de una forma más normal, pero sin ser muy claro en el patrón climatológico ante la presencia de un evento frío (IDEAM).

Hidrología: Es la ciencia natural que estudia al agua, su ocurrencia, circulación y distribución en la superficie terrestre, sus propiedades químicas y físicas y su relación con el medio ambiente, incluyendo a los seres vivos (Aparicio Mijares, 1989).

Inundación: Las inundaciones son fenómenos hidrológicos recurrentes potencialmente destructivos, que hacen parte de la dinámica de evolución de una corriente (IDEAM). Se producen por lluvias torrenciales y generalizadas que generan un aumento constante del nivel de las aguas contenidas dentro de un cauce, como ejemplo un río, superando la altura de las orillas ya sean naturales o artificiales, ocasionando un desbordamiento y dispersión de las aguas sobre las llanuras de inundación y zonas aledañas a los cursos de agua normalmente no sumergidas (IDEAM)

Lámina de agua: Es una forma de expresión de gran utilidad porque no depende del área. La unidad de medida más utilizada para expresar esta es el mm, que equivale al volumen de 1 litro de agua distribuido en una superficie de 1 metro cuadrado (Gil).

Mitigación: Conjunto de acciones y medidas, estructurales o no-estructurales, dirigidas a "reducir" las condiciones de vulnerabilidad o la exposición a las amenazas de las comunidades y su infraestructura (CONRED, 2007). Normalmente se acostumbra a implementar acciones estructurales que disminuyen el impacto del evento, y por ende disminuir los daños (CONRED, 2007).

Periodos de retorno: es el tiempo esperado o tiempo medio entre dos sucesos de baja probabilidad (Mendez Gutierrez, 2019).

Recurso hídrico: Recursos disponibles o potencialmente disponibles, en cantidad y calidad suficientes, en un lugar y en un período de tiempo dados, apropiados para satisfacer una demanda identificable (UNESCO, 2012).

Rivera: Las riveras son una parte esencial de los ecosistemas fluviales (Gonzáles Del Tánago). Representan una zona de ecotono o transición entre el medio acuático, de caudales circulantes, y el medio terrestre de las inmediaciones del río, recibiendo la influencia hidrológica de ambos, al constituir un espacio compartido en el ciclo del agua, de los sedimentos y de los nutrientes (Gonzáles Del Tánago).

Riesgo: El riesgo es la probabilidad de que una amenaza se convierta en un desastre. La vulnerabilidad o las amenazas, por separado, no representan un peligro (UNDRR). Pero si se juntan, se convierten en un riesgo, o sea, en la probabilidad de que ocurra un desastre (UNDRR). SAT (Sistema de alerta temprana): Es una medida de adaptación y tecnológica, al cambio climático que utiliza sistemas de comunicación en tiempo real integrados con el fin de ayudar a las comunidades a prepararse para los peligros relacionados con el clima (Naciones Unidas). SIG (Sistemas de información geográfica): Un SIG se define como un conjunto de herramientas y datos que están diseñados con el fin de actuar coordinada y lógicamente para

capturar, almacenar, analizar, transformar y presentar toda la información geográfica y de sus atributos y características con el fin de satisfacer múltiples propósitos (Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt, 2006). Los SIG son una tecnología que permite gestionar y analizar la información espacial, y que surgió como resultado de la necesidad de disponer rápidamente de información para resolver problemas y contestar a preguntas de modo inmediato (Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt, 2006).

TIC (Tecnologías de la información y las comunicaciones): Las TIC se desarrollan a partir de los avances científicos producidos en los ámbitos de la informática y las telecomunicaciones (Belloch Ortí). Las TIC son el conjunto de tecnologías que permiten el acceso, producción, tratamiento y comunicación de información presentada en diferentes códigos (texto, imagen, sonido...) (Belloch Ortí).

10.3MARCO TEORICO

10.3.1 INUNDACIONES:

Según (El Espectador) "una inundación es la ocupación de agua en zonas que habitualmente están libres de esta, bien por desbordamiento de ríos, quebradas, lagunas, ciénagas, etc., en resumen, por incrementos de los caudales en los cauces, o por incidencia de cuerpos de agua" (El Espectador).

Y aunque existan diferentes tipos de inundaciones y por diferentes causas, el enfoque de este proyecto se desarrollara en las inundaciones fluviales y en las causas que las producen.

Así mismo, (El Espectador) explica que "las inundaciones fluviales se generan cuando el agua se desborda de los ríos y queda en los terrenos cercanos a ellos, la fuerza del agua es capaz de arrastrar todo, lo que se encuentre en su paso" (El Espectador).

Mencionado anteriormente existen varias causas que producen estas inundaciones, y al centrarnos en las que se producen en los ríos encontramos dos que son las más importantes, las cuales son:

En primer lugar, se encuentran las inundaciones lentas o de tipo aluvial, las cuales (El Espectador) las define así, "se originan cuando tienen lugar lluvias persistentes y generalizadas dentro de una extensa zona de terreno, generando un paulatino incremento de los caudales de los ríos hasta superar la capacidad máxima de almacenamiento" (El Espectador), es decir que además de subir la lámina de agua del río, inunda las costas de este ayudando a que una vez la creciente del afluente se desborde arrase con las zonas ribereñas llevándose todo lo que está a su paso, casos que se pueden apreciar durante las temporadas de lluvia o fenómenos de la niña cosa que sucede en el municipio de Girardot que fronteriza con el Río Magdalena.

Segundamente, están las inundaciones súbitas o de tipo torrencial, que según (El Espectador) son "producidas en ríos de montaña y originadas por lluvias torrenciales. El agua pluvial caída en la montaña fluye hacia la zona baja con gran fuerza y presión, desbordándose e inundando cuanto encuentra a su paso" (El Espectador), suceso que según las pendientes de la montaña se puede presentar en cuestión de minutos en altas pendientes, y en caso contrario con bajos porcentajes se puede presentar en horas, pero una vez el agua empiece a bajar creara el mismo daño de una u otra forma.

Pero al tener como población vulnerable a las personas que habitan la rivera del Río Magdalena en el margen con el municipio de Girardot-Cundinamarca, nos enfocaremos en las inundaciones tipo lentas, que son las que en épocas de extensa lluvia son las más afectadas por la creciente del afluente.

10.3.2 ESTUDIO HIDROLÓGICO:

Las diferentes variaciones de la naturaleza hacen que cada vez se necesiten más herramientas para poder pronosticar con mayor eficiencia fenómenos que afectan a la población, y es aquí donde los modelos hidrológicos entran a actuar, según el (Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia) "un modelo hidrológico es pues una representación simplificada de un sistema real complejo llamado prototipo, bajo forma física o matemática." (Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia).

Aquí es donde se puede apreciar la importancia de esta herramienta, en donde se puede simular un evento como lo puede ser en este caso una inundación de un afluente, después de haber recolectado los datos correspondientes a las estaciones ubicadas en el río a modelar y de igual forma en el lugar donde se quiere realizar.

Con estas herramientas podemos generar ayudas para la sociedad, como lo menciona el (Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia) "La modelación hidrológica se constituye en una valiosa herramienta para mejorar el conocimiento de los sistemas hídricos de la nación con el propósito de dar soporte a la toma de decisiones sobre las acciones de gestión integral del recurso hídrico y cubre un amplio espectro de aplicaciones" (Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia).

Este es el objetivo al realizar la presente modelación, generando una ayuda principalmente a los habitantes ribereños, pero también a las autoridades competentes, creando bases para futuras investigaciones y para la futura creación de un sistema de alerta temprana (SAT) ante inundaciones y así poder mejorar el tiempo de acción a la hora de evacuar las zonas

afectadas, y con esto poder mitigar los desastres que producen estos fenómenos naturales a los habitantes de las costas del río.

11. METODOLOGÍA

11.1 METODOLOGÍA DE INVESTIGACIÓN:

Primeramente, se debe tener en cuenta que datos son los que se van a recolectar durante el desarrollo del proyecto, en cuyo caso en el presente se van a manejar datos cuantitativos cuyos valores representan los caudales máximos y mínimos del Río Magdalena y al ser datos de fenómenos naturales no serán modificados, por consiguiente, la metodología a utilizar será la de tipo descriptiva.

Continuando con la investigación al momento de representar resultados y cuantificar valores y datos obtenidos, por medio de gráficas, tablas e imágenes, se llevará a cabo el uso de la metodología tipo explicativo.

11.2 METODOLOGÍA DE DESARROLLO:

En la primera parte de la investigación se llevó a cabo la recolección de datos de los caudales máximos y mínimos de 5 estaciones ubicadas en zonas cercanas al municipio de Girardot, seguidamente se cuantificaron en tablas basándose en El Modelo Determinístico – Estocástico que "fué desarrollado por el experto Lutz Scholz para cuencas de la sierra peruana, entre los años 1979-1980, en el marco de Cooperación Técnica de la República de Alemania a través del Plan Meris II" (Aguirre N.).

Método que es descrito por (Aguirre N.) de la siguiente manera, "...cuenta con una estructura determínistica para el cálculo de los caudales mensuales para el año promedio (Balance Hídrico - Modelo determinístico)..." (Aguirre N.), que además este mismo genera una

garantía diciendo "los resultados de la aplicación del modelo a las cuencas de la sierra peruana, han producido una correspondencia satisfactoria respecto a los valores medidos" (Aguirre N.).

En la última parte del presente proyecto, con la modelación de la zona de inundación en el afluente ya estipulado, se tuvo en cuenta la metodología hecha por el IDEAM, la cual especifica que, "para elaborar los mapas de inundación se requiere un proceso sistemático en el cual se deben especificar los conjuntos de datos en los que se basarán los mapas y la metodología que se utilizará, por tanto, el objetivo de esta guía es: dar una orientación para llevar a cabo ejercicios de mapeo de inundaciones para los diversos procesos de planificación a nivel nacional, regional y local" (IDEAM, 2017).

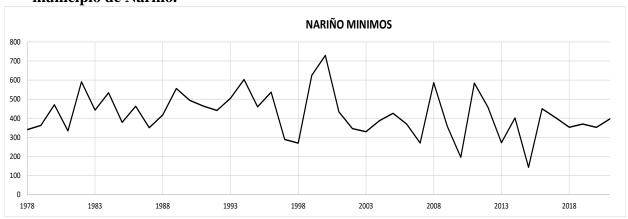
Una vez ya estipulada la metodología a seguir, teniendo en cuenta la metodología anteriormente mencionada, se prosiguió a elegir el tipo de mapa de inundación descritos en la guía, y según el fin del proyecto, se dio como elección los mapas de amenaza de inundación, que según él (IDEAM, 2017) tiene como definición "Provee información gráfica de la inundación esperada profundidades, extensión, velocidad del flujo, etc.) para un evento de probabilidad dada o varias probabilidades." (IDEAM, 2017), donde se podrá establecer la extensión y áreas que sean afectadas por la inundación y la profundidad o altura del agua.

"Los mapas de amenaza de inundación proporcionan información básica para desarrollar la orientación técnica sobre varios problemas de manejo de llanuras de inundación y ayudan a las diferentes partes interesadas, incluyendo los gobiernos locales a tomar decisiones en la gestión de inundaciones (IDEAM, 2017). Por tanto, son importantes para la evaluación del riesgo de inundación, el desarrollo de planes de mitigación de inundaciones, la preparación de esquemas de manejo integral del riesgo de inundación y en particular para la planificación

urbana local" (IDEAM, 2017), siendo este el propósito y el uso de este tipo de mapa de inundación.

12. RESULTADOS

El primer paso para la ejecución de la investigación fue la recolección de los históricos de los caudales máximos y mínimos en las estaciones cercanas a Girardot, que en este caso se tomaron las estaciones de Arrancaplumas en Guaduas, las estaciones automáticas de Nariño, Purificación y Natagaima, y la estación Puente Santander en la ciudad de Neiva.


Durante la cuantificación de los datos se evidencio dos problemas, el primero era la falta de calidad de los datos que el IDEAM suministraba a través de su plataforma, en donde se encontraban datos de caudales de grandes magnitudes fuera de lo que podría ser un rango normal, y por otro lado era la falta de datos de algunas fechas, en donde se encontraban vacíos y lo cual perjudicaba retrasando la investigación.

Una vez cuantificados los datos suministrados, los datos fuera de lo normal fueron tomados como datos faltantes, y ya designado esto, se calcularon estos datos de dos manejas diferentes, la primera era el método de los promedios para las series estocásticas, la cual se hacía efectiva en donde en algunos años faltaban no más de 4 datos, y en donde faltaban más de 4 datos se realizó la segunda manera, realizando un promedio de 5 meses atrás. Ya con esto terminado, las gráficas quedaron de la siguiente manera.

Ilustración 1. Histórico de caudales mínimos de la estación Arrancaplumas, municipio de Guaduas.

Ilustración 2. Histórico de caudales mínimos de la estación Automática de Nariño, municipio de Nariño.

Fuente propia.

Ilustración 3. Histórico de caudales mínimos de la estación Automática de Purificación, municipio de purificación.

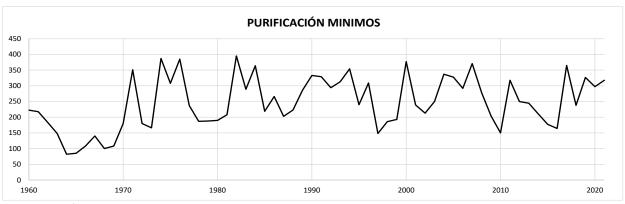


Ilustración 4. Histórico de caudales mínimos de la estación Angostura Automática, municipio de Natagaima.

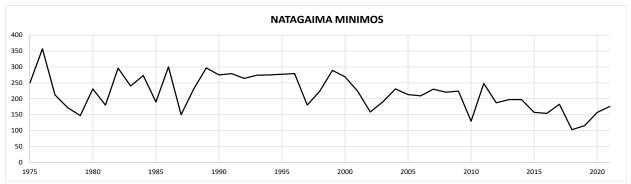
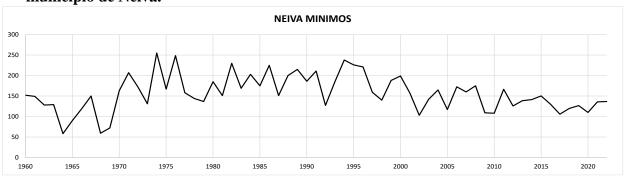



Ilustración 5. Histórico de caudales mínimos de la estación Puente Santander, municipio de Neiva.

Fuente propia.

Ilustración 6. Histórico de caudales máximos de la estación Arrancaplumas, municipio de Guaduas.

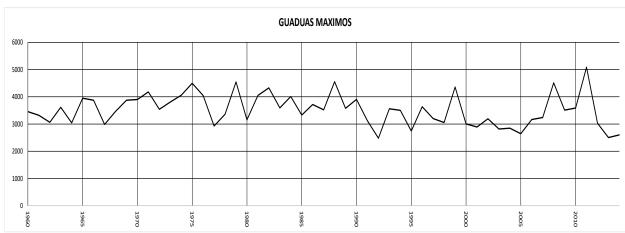


Ilustración 7. Histórico de caudales máximos de la estación Automática de Nariño, municipio de Nariño.

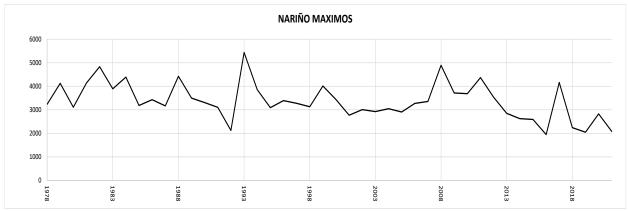


Ilustración 8. Histórico de caudales máximos de la estación Automática de Purificación, municipio de Purificación.

Fuente propia.

Ilustración 9. Histórico de caudales máximos de la estación Angostura Automática, municipio de Natagaima.

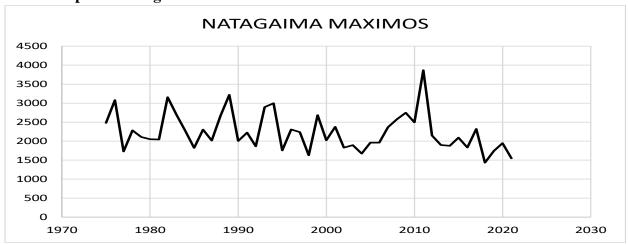
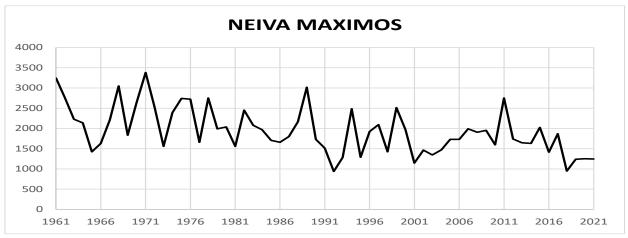
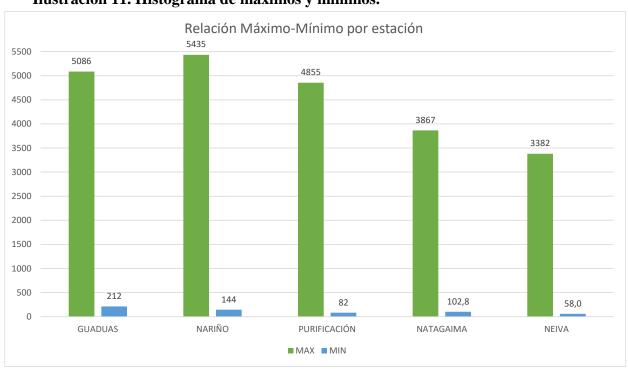




Ilustración 10. Histórico de caudales máximos de la estación Puente Santander, municipio de Neiva.

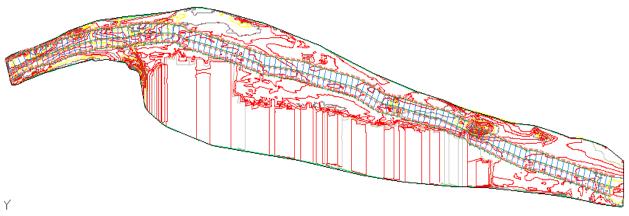

Una vez cuantificado y graficado todos los datos de los caudales se prosiguió a realizar un histograma con los máximos y mínimos de cada estación y así poder obtener una imagen clara del comportamiento de este afluente.

Ilustración 11. Histograma de máximos y mínimos.

Ya sabiendo el comportamiento del río, se puede empezar con diseño de la huella de inundación, pero lo primero que se debe tener son las curvas de nivel o la batimetría de dicho afluente, y aunque fue difícil conseguir, se pudieron analizar 2km de tramo del Magdalena cerca la ciudad de Girardot, más exactamente en el municipio de Ricaurte, que con esta información se puede empezar a realizar los primeros modelamientos en Hec-Ras, pero antes se le hicieron unos ajustes en Autocad Civil 3D.

Ilustración 12. Batimetría del Río Magdalena y secciones de perfil para modelamiento en Hec-Ras

Fuente: suministrado por SAP Agregados.

Con las secciones ya dibujadas dentro de las curvas de nivel de la base del río, se procede a realizar los perfiles de estas y así comprobar si quedaron bien ejecutadas para, si son correctas, exportarlas a Hec-Ras para realizar el modelamiento.

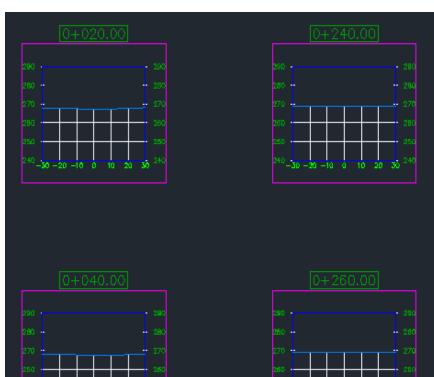


Ilustración 13. Ejemplos de las 113 secciones que se dibujaron en las curvas de nivel.

Fuente propia.

La gran mayoría de las secciones quedaron con una tendencia a ser rectas, esto se debe a que la superficie del río tiende a ser recta y aunque en la batimetría se vean varias líneas, estas están casi a la misma altura.

Una vez terminado con los perfiles de las secciones, en Civil 3D esta la opción de exportar a Hec-Ras, para modelar como seria el río e ingresar los caudales de entrada para ver cómo se comporta.

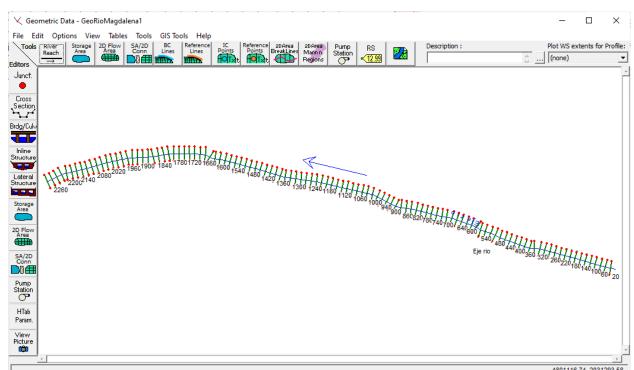
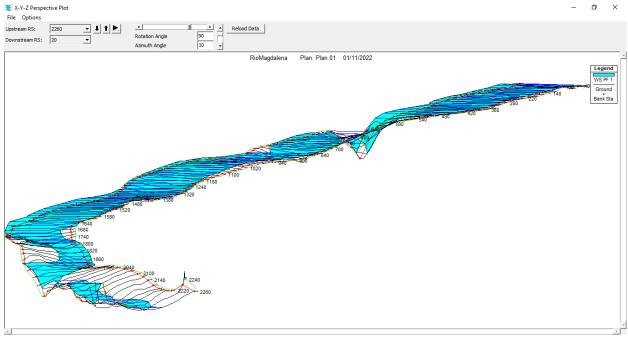
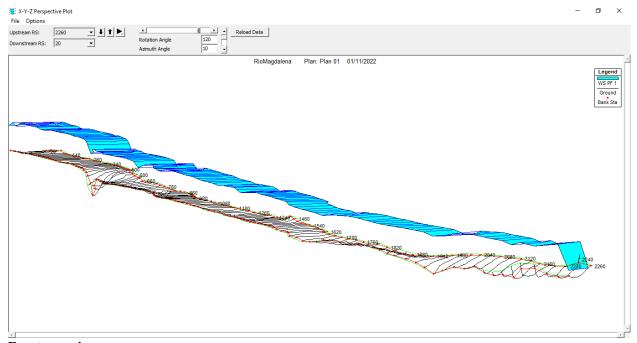



Ilustración 14. Geometría de las secciones en Hec-Ras.


Con las secciones ya en Hec-Ras, se puede observar cómo quedan mejor cada una de las secciones geométricamente, además de que se establecen los valores hidráulicos, como lo son el número de Manning para los ríos que en este caso se tomo 0,025.

Ya aquí se procedió a colocar los caudales de entrada y los caudales para los periodos de retorno, los cuales fueron a 10, 25, 50 y 100 años.

Ilustración 15. Sección del Río Magdalena con caudal mínimo (58m³/s)

Ilustración 16. Sección del Río Magdalena con caudal máximo (5435m³/s)

Ya con los caudales de entrada, se calculo los caudales para los periodos de retorno mencionados anteriormente de 10, 25, 50 y 100 años. Mediante las formulas para los periodos de retorno:

$$T = \frac{n}{N+1} \qquad \qquad P = \frac{1}{T}$$

Donde:

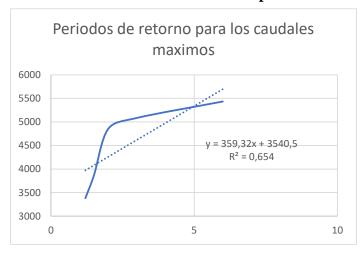

- T, es la probabilidad de que ese caudal se iguale o se repita.
- n, es el numero de orden para el caudal ordenados de mayor a menor.
- N, es la cantidad de datos (en este caso caudales) de la serie.
- P, es el periodo de retorno en años.

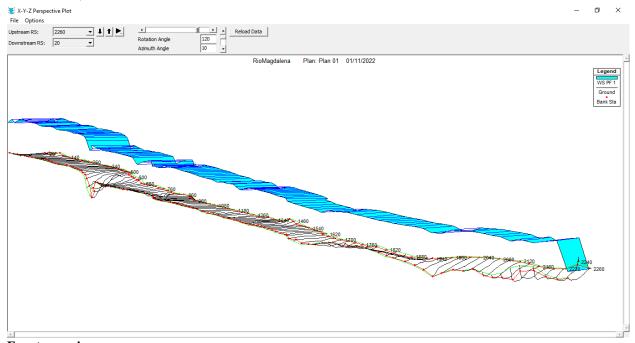
Ilustración 17. Cálculo de los periodos de retorno.

n	Q(m³/s)	n/(N+1) %	1/% (años)
1	5435	17%	6
2	5086	33%	3
3	4855	50%	2
4	3867	67%	1,5
5	3382	83%	1,2

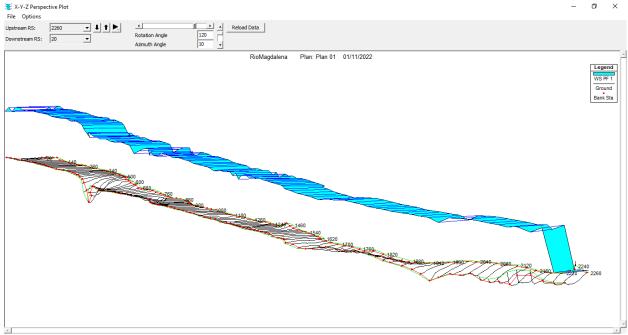
Fuente propia.

Ilustración 18. Grafica de los periodos de retorno.

Con la fórmula extraída de la gráfica se procedió a calcular el caudal para los periodos de retorno establecidos.


Ilustración 19. Cálculo de los caudales para los periodos de retorno.

Año	Q(m³/s)
10	7133,7
25	12523,5
50	21506,5
100	39472,5


Fuente propia.

Una vez generado los caudales para los periodos de retorno, se siguió modelando en Hec-Ras estos caudales para la sección del Río ya establecida.

Ilustración 20. Sección del Río Magdalena con caudal para periodo de retorno de 10 años $(7133,7m^3/s)$

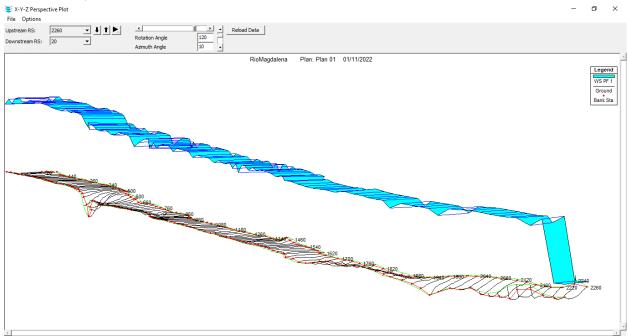


Ilustración 21. Sección del Río Magdalena con caudal para periodo de retorno de 25 años (12523,5m³/s)

Fuente propia.

Ilustración 22. Sección del Río Magdalena con caudal para periodo de retorno de 50 años $(21506,5m^3/s)$

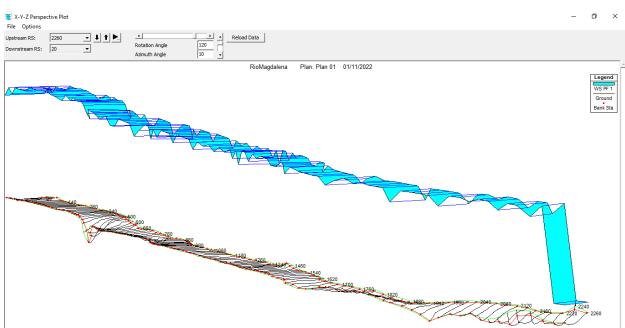


Ilustración 23. Sección del Río Magdalena con caudal para periodo de retorno de 100 años (39472,5m³/s)

Automáticamente en Hec-Ras podemos ver cual es la cota de elevación de estos caudales, elevación que se necesita para poder realizar la huella de inundamiento en ArcGIS.

Plataforma donde se originó el DEM (Modelo Digital de Elevación) de la ciudad de Girardot y del Río Magdalena por medio de una imagen georeferenciada del sector y unas curvas de nivel extraídas de esta misma imagen.

Por medio de Google Earth Pro y la Grilla 1:25000 de Colombia actualizada se busco el marco que abarcara el sector donde se va a trabajar, para poder así buscar en la pagina de Colombia en Mapas este sector, una vez descargado, se procedió a extraer las curvas de nivel de esta imagen en ArcGIS, y con esto elaborar el DEM, que a continuación en ArcScene se elaboró el modelamiento de la huella de inundación.

Ilustración 24. Marco del sector a trabajar de la Grilla 1:25000 de Colombia.

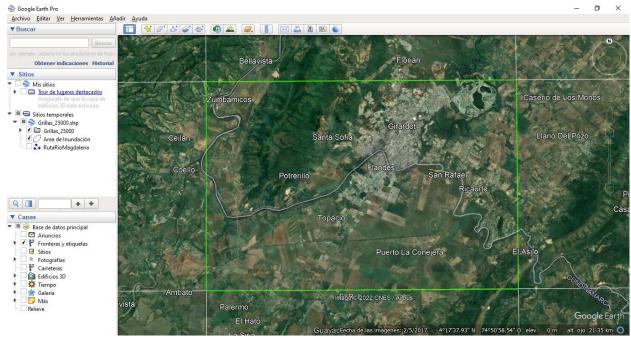
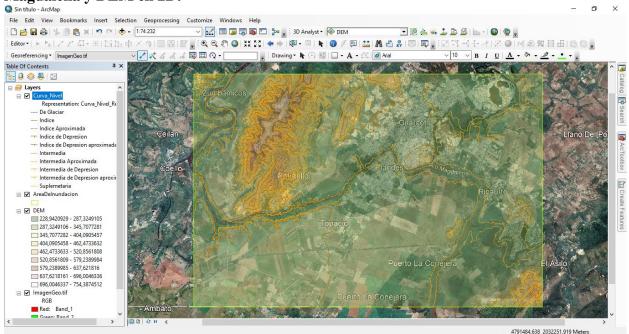
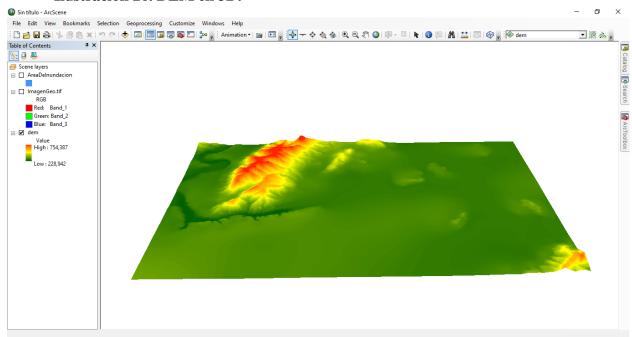




Ilustración 25. Curvas de nivel, imagen georeferenciada de Girardot y el Río Magdalena y DEM en 2D.

Una vez obtenido el DEM en 2D se exporto a ArcScene donde se le puso elevación y se elaboro en 3D, necesario para poder digitalizar la imagen en 3D, y con ella crear la huella de inundación con las cotas extraídas del modelamiento en Hec-Ras.

Ilustración 26. DEM en 3D.

Fuente propia.

Ilustración 27. Imagen en 3D.

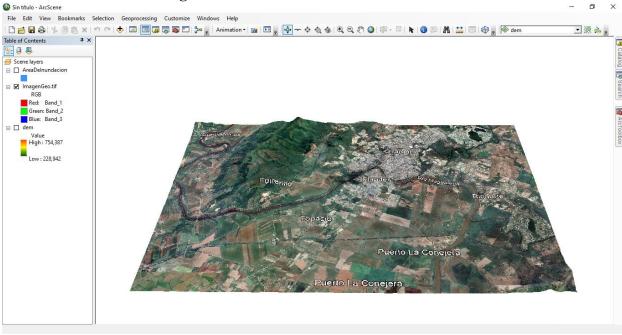
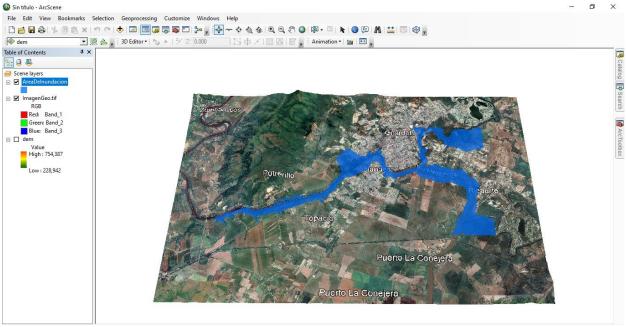



Ilustración 28. Huella de inundación con el caudal máximo de entrada (5435m³/s)

Ilustración 29. Huella de inundación con caudal con periodo de retorno para 10 años $(7133,7m^3/s)$

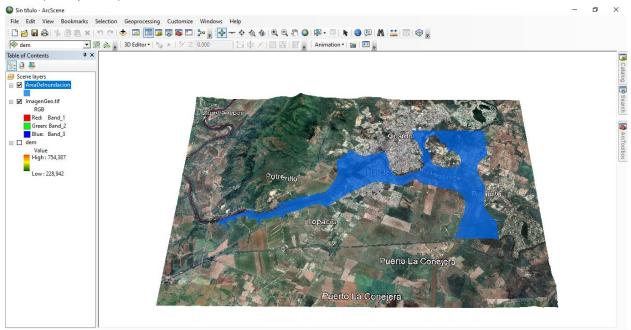


Ilustración 30. Huella de inundación con caudal con periodo de retorno para 25 años (12523,5m³/s)

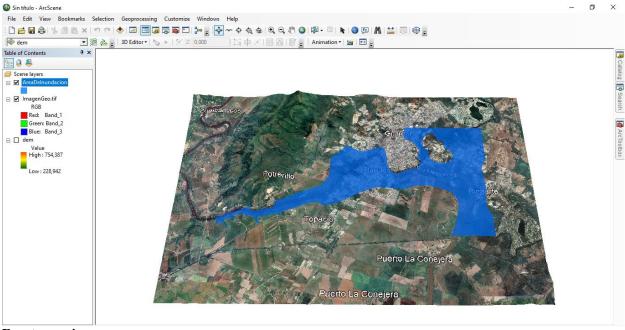
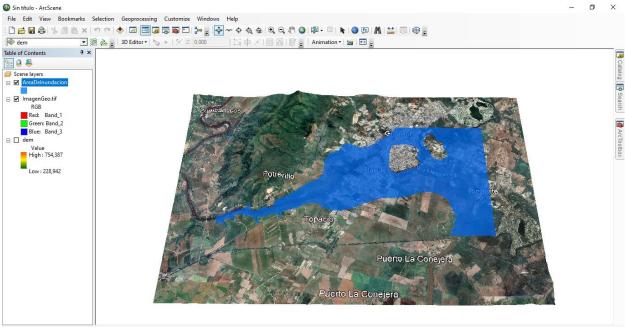
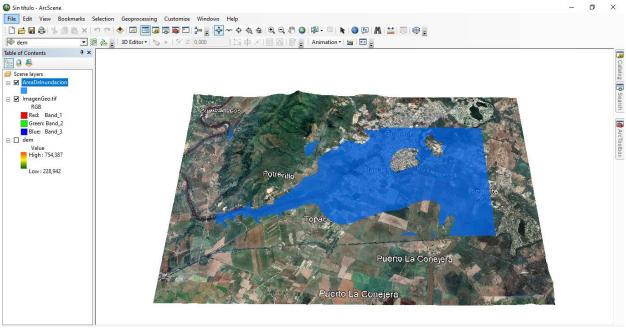




Ilustración 31. Huella de inundación con caudal con periodo de retorno para 50 años (21506,5m³/s)

Ilustración 32. Huella de inundación con caudal con periodo de retorno para 100 años (39472,5 m^3/s)

13. CONCLUSIÓN

Como se menciono anteriormente en las limitaciones del presente, las dificultades se presentaron con la descarga y cuantificación de los datos del IDEAM, primeramente, por las caídas recurrentes de la plataforma, y seguidamente por la baja calidad de los datos descargados, algunos porque eran demasiados grandes en comparación con la mayoría, y en otros casos porque no había valores hasta en años completos.

Teniendo en cuenta las huellas de inundación, la población rivereña se ve totalmente afectada con el caudal máximo histórico, mientras que la zona urbana de Girardot se empieza a ver afectada a partir del caudal del periodo de retorno a los 25 años, y se ve casi totalmente afectada con un caudal para el periodo de retorno comprendido para los 100 años.

Sin buscarlo, se puede observar que el Río Bogotá quedo comprendido dentro de la huella, arrojando datos no exactos, ya que no se realizo el modelamiento adecuado, pero deja bases de cómo se puede comportar y cuales serian las primeras zonas en ser afectadas por este afluente tanto para Girardot como para Ricaurte.

Dentro del modelamiento para el margen del Río Magdalena con la ciudad de Girardot, los resultados arrojados por la huella dejan bases para una futura investigación de igual magnitud en el municipio de Flandes, ya que si se analiza primero se ve afectado este municipio con los caudales modelados que la ciudad de Girardot.

Las aplicaciones utilizadas de la SIG y de Autodesk evidenciaron un gran comportamiento frente al modelamiento de la huella, y tienen un gran antecedente como se ve evidenciado en el estado del arte.

El margen de error mas alto que se presentó dentro de la investigación fue la precisión de referenciación de una imagen extraída de la Grilla 1:25000 de Colombia, y se recomienda la

utilización de una imagen satelital de mejor calidad como lo puede ser una ortofoto, o de páginas especializadas en imágenes georeferenciadas.

14. REFERENCIAS

- Aguirre N., M. (s.f.). MODELO DETERMINISTICO-ESTOCASTICO DE LUTZ SCHOLZ 1. GENERALIDADES.

 Library: https://node1.123dok.com/dt02pdf/123dok_es/003/036/3036786.pdf.pdf?X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=7PKKQ3DUV8RG19BL%2F20221013%2F%2Fs3%2Faws4_request&X-Amz-Date=20221013T054720Z&X-Amz-SignedHeaders=h
- Aparicio Mijares, F. J. (1989). Fundamentos de hidrologia de superficie. Academia: https://www.academia.edu/8254237/Fundamentos_de_hidrologia_de_superficie_Aparicio
- Belloch Ortí, C. (s.f.). LAS TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN (T.I.C.) . Universidad de Valencia: https://www.uv.es/~bellochc/pdf/pwtic1.pdf
- Casanova, R., Sosa, R., Antoni, M., Canneva, N., y Silvera, A. (Agosto de 2012). *Algunos conceptos sobre:*Cartografía y SIG. Ceibal: https://www.ceibal.edu.uy/
- CONRED. (Agosto de 2007). *Concepto de mitigación*. Biblioteca Virtual en Salud y Desastres Guatemala: http://desastres.medicina.usac.edu.gt/documentos/docgt/pdf/spa/doc0143/doc0143-parte02.pdf
- Dorado Melo, J. S. (2020). SISTEMA DE MONITOREO Y CONTROL DE ALERTA TEMPRANA DEL DESBORDAMIENTO DE UN RIO (SIALTERI). Universidad Piloto de Colombia: http://repository.unipiloto.edu.co/handle/20.500.12277/7475
- El Espectador. (s.f.). *Definición*. Inundaciones:
 - https://repositorio.gestiondelriesgo.gov.co/bitstream/handle/20.500.11762/20368/Tema%203 %20Inundaciones.PDF?sequence=1&isAllowed=y#:~:text=Las%20inundaciones%20fluviales%20s e%20generan,que%20encuentre%20en%20su%20paso.

- ENEGI. (s.f.). Modelos Digitales de Elevación MDE. ENEGII:
 - https://www.inegi.org.mx/contenidos/temas/mapas/relieve/continental/metadatos/mde.pdf
- Gil, R. (s.f.). Lamina del agua. Almacenaje de agua en el suelo. El agua del suelo:
 - https://www.profertil.com.ar/wp-content/uploads/2020/08/agua-edafica.pdf
- Gonzáles Del Tánago, M. (s.f.). LAS RIBERAS, ELEMENTOS CLAVE DEL PAISAJE Y EN LA GESTIÓN DEL AGUA. Observatori de l'Aigua: http://observatoriaigua.uib.es/repositori/gf_gonzalez.pdf
- Hortua Cortés, N. G. (1 de Enero de 2004). *Geomorfología e hidrología, combinación estratégica para el estudio de las inundaciones en Florencia (Caquetá).* Revistas UNAL:

 https://revistas.unal.edu.co/index.php/rcg/article/view/10145
- IDEAM. (Diciembre de 2017). *GUÍA METODOLÓGICA PARA LA ELABORACIÓN DE MAPAS DE INUNDACIÓN.* IDEAM:
 - http://documentacion.ideam.gov.co/openbiblio/bvirtual/023774/GUIA_METODOLOGICA_MAP AS_INUNDACION_MARZO_2018.pdf
- IDEAM. (12 de Noviembre de 2019). *DEFINICIONES DEL CATÁLOGO NACIONAL DE ESTACIONES*. IDEAM: http://www.ideam.gov.co/documents/10182/557765/Definiciones+CNE.pdf/25e1cca5-ee47-4eaf-86c0-c4f5192a9937
- IDEAM. (s.f.). *AMENAZAS INUNDACIÓN*. IDEAM: http://www.ideam.gov.co/web/agua/amenazas-inundacion
- IDEAM. (s.f.). Fenómenos del Niño y la Niña. IDEAM: http://www.ideam.gov.co/web/siac/ninoynina
- Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia. (s.f.). *Modelación Hidrológica*. IDEAM: http://www.ideam.gov.co/web/agua/modelacion-hidrologica
- Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt. (Enero Junio de 2006). *LOS SISTEMAS DE INFORMACIÓN GEOGRAFICA*. Redalyc:
 - https://www.redalyc.org/pdf/360/36012424010.pdf

- mbelenyu. (25 de Abril de 2018). *Definicion de Caudal.* Scribd:
 - https://es.scribd.com/document/377329479/Definicion-de-Caudal
- Mendez Gutierrez, W. C. (19 de Noviembre de 2019). *Periodo de retorno.* Scribd: https://es.scribd.com/document/435804963/09-Periodo-de-Retorno-Definicion
- Montoya, E. O. (Marzo de 2022). Sistemas de información geográfica una herramieta de desarrollo comunitario. *Revista desarrollo Regional*, pág. 4.
- Mora Mariño, W., y Ochoa Guerrero, R. G. (2016). *Modelamiento de zonas de inundación por medio de las herramientas HEC-RAS, GEO-RAS y ARCGIS, para el sector comprendido entre los municipios de Corrales Paz del Rio a lo largo del Río Chicamocha, en el departamento de Boyacá.*Universidad Pedagógica y Tecnológica de Colombia:

 https://repositorio.uptc.edu.co/handle/001/1677
- Naciones Unidas. (s.f.). Sistemas de alerta temprana. Naciones Unidaas:

 https://www.un.org/es/climate-change/climate-solutions/early-warning-systems
- Nanía, L. S. (2002). *LA CUENCA Y LOS PROCESOS HIDROLÓGICOS*. Academia:

 https://www.academia.edu/27663030/LA_CUENCA_Y_LOS_PROCESOS_HIDROL%C3%93GICOS

 Navarro Hudiel, S. (Enero de 2008). *Curvas de Nivel*. Topografia II:
 - https://sinavarro.files.wordpress.com/2008/08/folleto-topografia-ii.pdf
- Peréz Rodríguez, C. A. (2020). Comunidades Sostenibles: Fomentando La Conservación Del Ambiente

 Desde El Semillero Gestión Del Recurso Hídrico. *Revista Perspectivas*, págs. 13-25.
- Pérez Rodríguez, C. A. (s.f.). Fortalecimiento del semillero gestión del recurso hídrico implementando el aprendizaje basado en proyectos. Dialnet:

 https://dialnet.unirioja.es/servlet/articulo?codigo=7887998
- Perico-Grandos, N., Arévalo Algarra, H., Reyes-Rodriguez, C., Perico-Martinez, C., Vera, M. C., y Monroy G, J. (Enero Marzo de 2021). Sitios de inundaciones causadas por los ríos La Vega y Jordán,

Tunja(Boyacá). Revistas UDistrital:

https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/15248/16857

Real Academia Española. (s.f.). *Damnificado*. Real Academia Española: https://dle.rae.es/damnificado

Torres Quintana, M. F. (2017). *Modelación hidrológica para el estudio de inundación, en el Departamento de Cundinamarca, del Río Frío a la altura del municipio de Chía*. Universidad

Católica de Colombia: https://repository.ucatolica.edu.co/handle/10983/14636

UNDRR. (s.f.). ¿Qué es el riesgo? La Oficina de las Naciones Unidas para Reducción de Riesgo de

Desastres: La Oficina de las Naciones Unidas para Reducción de Riesgo de Desastres

UNESCO. (2012). *Glosario hidrologico internacional*. UNESCO:

https://unesdoc.unesco.org/ark:/48223/pf0000221862/PDF/221862qaa.pdf.multi

Universidad de los Andes Venezuela. (27 de Febrero de 2017). *Presentacion 3 Cuenca Hidrográfica*.

Universidad de los Andes Venezuela, Nucleo Universitario "Rafael Rangel":

http://www.nurr.ula.ve/saladegeografia/DOCUMENTOS/HIDROGRAFIA/PRESENTACIONES/Presentacion_3_CUENCA_HIDROGRAFICA.pdf

15. ANEXOS

Tabla 1. Histórico de caudales mínimos de 1960 a 1980 de la estación Arrancaplumas, municipio de Guaduas.

Mes/Año	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
Ene	597	570	570	674	480	590	530	798	386	386	386	858	712	392	824	503	936	472	472	541	535
Feb	715	437	570	798	412	496	330	798	452	385	386	953	620	337	1144	523	748	475	409	410	582
Mar	570	397	511	715	401	496	386	628	465	386	633	1027	695	333	999	783	1077	439	433	776	518
Abr	798	798	798	961	790	590	496	681	712	880	620	1274	703	469	1027	692	1194	751	1434	715	703
May	918	798	1427	1127	916	1044	715	1230	695	880	961	1211	1312	546	1054	1260	1499	830	789	888	801
Jun	838	755	1368	880	1211	931	630	1022	961	712	921	1161	1022	734	1028	1362	1328	928	940	1178	785
Jul	1007	961	1127	798	1105	817	798	961	1044	752	880	991	1053	786	931	942	1261	669	583	740	724
Ago	838	630	918	798	1003	884	798	880	798	715	880	973	675	942	741	838	823	656	610	574	515
Sep	715	597	630	511	755	496	630	496	673	613	934	851	687	1228	766	931	584	743	593	861	552
Oct	511	630	838	597	790	563	740	555	880	1044	798	1000	565	1151	1075	1101	884	1124	752	681	690
Nov	898	1262	1127	1085	940	1086	880	880	880	1028	1342	1132	934	1472	1314	1919	713	1304	715	1027	754
Dic	755	755	798	715	855	770	1313	212	636	732	888	820	513	1441	669	1536	631	626	638	750	688
Min	511	397	511	511	401	496	330	212	386	385	386	820	513	333	669	503	584	439	409	410	515

Fuente propia.

Tabla 2. Histórico de caudales mínimos de 1981 a 2000 de la estación Arrancaplumas, municipio de Guaduas.

Mes/Año	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Ene	326	669	506	900	622	565	473	549	784	626	567	606	534	617	612	643	705	360	844	886
Feb	381	951	402	966	448	623	449	511	717	599	550	589	521	812	592	791	740	383	1301	999
Mar	451	1134	517	563	390	1059	403	456	707	691	729	569	848	885	699	858	692	373	1253	922
Abr	427	1458	554	875	517	971	484	456	809	738	873	589	743	1319	717	861	825	744	1451	1113
May	1440	1356	1112	1193	805	969	980	702	982	1287	845	713	1232	1508	1097	1168	939	781	1339	1146
Jun	1138	976	711	1079	790	1110	634	1029	1096	795	768	589	1114	1303	1004	1044	709	1180	1161	1286
Jul	682	827	677	1137	773	950	705	1177	951	758	1186	704	757	891	880	902	796	1170	548	974
Ago	650	768	623	811	812	687	803	728	553	785	803	751	610	687	781	643	583	539	712	683
Sep	595	640	516	636	649	490	560	777	566	569	666	556	572	595	695	584	466	491	573	1013
Oct	637	962	555	1182	722	1323	709	742	880	611	589	552	510	624	785	689	464	509	960	671
Nov	889	862	672	1625	796	965	776	932	1024	781	609	548	933	900	974	692	488	1174	1247	849
Dic	760	845	716	1078	583	646	631	901	702	640	753	609	681	711	846	690	398	800	1234	703
Min	326	640	402	563	390	490	403	456	553	569	550	548	510	595	592	584	398	360	548	671

Fuente propia.

Tabla 3. Histórico de caudales mínimos del 2001 al 2021 de la estación Arrancaplumas, municipio de Guaduas.

Mes/Año	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Ene	586	455	359	471	487	735	581	769	1018	270	775	1034	432	619
Feb	563	393	420	388	495	729	454	606	1184	275	596	835	594	673
Mar	687	388	458	426	646	649	421	836	1242	408	1053	977	676	965
Abr	657	814	533	499	808	1268	913	1396	1115	456	1367	1314	520	687
May	656	764	826	902	1111	1015	1390	1019	727	748	2338	779	920	1023
Jun	734	1441	621	967	618	1023	1386	1454	679	959	1192	567	633	1188
Jul	760	673	599	609	568	839	744	1246	724	983	882	597	672	800
Ago	594	598	420	552	533	469	710	901	623	588	691	605	601	747
Sep	569	353	387	499	573	656	604	649	476	673	591	487	584	515
Oct	543	445	563	606	636	423	545	913	440	558	924	486	583	480
Nov	676	540	777	1016	1023	1075	953	1370	533	1266	869	564	638	778
Dic	1037	463	669	608	836	745	733	1251	430	1207	1138	622	796	576
Min	543	353	359	388	487	423	421	606	430	270	591	486	432	480

Tabla 4. Histórico de caudales mínimos de 1978 a 1998 de la estación Automática de Nariño, municipio de Nariño.

Mes/Año	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
Ene	363	383	491	334	621	449	865	569	463	456	515	759	536	475	511	530	603	505	581	822	270
Feb	364	363	535	337	781	443	877	412	555	412	483	761	518	464	522	505	770	460	775	888	277
Mar	341	643	471	430	813	508	534	379	938	351	422	665	614	609	494	800	749	481	791	646	328
Abr	1240	639	679	428	1181	545	801	439	904	478	418	806	676	783	459	711	1190	570	727	898	787
May	676	820	721	1236	1011	939	1015	755	896	917	685	1006	1232	742	564	1182	1270	962	1091	997	756
Jun	658	1045	716	992	804	563	881	765	1048	655	914	1019	887	730	564	1099	1227	947	925	727	997
Jul	535	661	657	675	792	539	973	782	917	643	1110	907	758	1016	600	797	909	745	881	650	1067
Ago	506	574	488	629	768	558	756	795	654	764	689	556	704	771	624	625	734	577	692	588	524
Sep	561	731	536	584	591	466	602	587	497	517	695	745	494	620	441	565	637	506	537	358	449
Oct	651	608	641	636	799	518	1041	663	1199	717	634	805	495	517	442	505	655	591	614	319	541
Nov	625	838	650	889	765	621	1344	735	942	879	916	943	691	494	453	898	895	820	666	373	1095
Dic	567	668	715	733	679	627	868	558	654	685	958	739	566	717	492	617	652	709	628	289	736
Min	341	363	471	334	591	443	534	379	463	351	418	556	494	464	441	505	603	460	537	289	270

Tabla 5. Histórico de caudales mínimos de 1999 a 2015 de la estación Automática de Nariño, municipio de Nariño.

Mes/Año	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Ene	818	851	463	468	330	424	426,3	613,9	515,3	746	988	255,5	655	921,4	272,7	401,6	195
Feb	1185	952	434	364	377	388	499	567,8	340,7	586,7	1200	196,2	590,9	783,1	593,1	505,8	480,2
Mar	1075	941	592	366	430	389	496,3	512	270,8	867	1217	354,5	1128	845,5	591	1044	392,6
Abr	1212	1005	519	694	410	482	673,4	1087	796,3	1216	1103	498	1344	1285	480,1	571,7	683,3
May	1140	1169	621	686	675	885	879,8	696,1	1285	942	681,7	769,8	1923	733,2	944,7	871	511,2
Jun	1197	993	691	1449	523	954	546,6	840,3	1326	1309	711,6	986,7	1064	527,2	497,5	1197	919,3
Jul	625	842	761	579	522	530	477,5	691,3	689,7	1216	793,5	1108	866,8	575,3	666,4	637	485,5
Ago	771	729	495	553	408	554	458,9	451,3	619,8	920,8	766,7	577,9	708,3	626,3	499,4	556,5	345,4
Sep	683	939	512	346	396	480	442,9	631,4	535,3	727	478,7	592,2	584,2	458,8	469	444,2	189,6
Oct	1001	754	446	385	449	513	554,7	370,3	542,2	843,8	422,1	548,2	940,5	481,7	518,3	410	332,7
Nov	1240	851	532	483	722	819	732,1	1045	856,9	1323	542,2	1175	946,8	557,5	611,5	679,8	301,7
Dic	1245	781	941	430	635	539	663	885,3	812,8	1194	358,5	1258	1106	521,9	702	460,6	143,7
Min	625	729	434	346	330	388	426,3	370,3	270,8	586,7	358,5	196,2	584,2	458,8	272,7	401,6	143,7

Fuente propia.

Tabla 6. Histórico de caudales mínimos del 2015 al 2021 de la estación Automática de Nariño, municipio de Nariño.

Mes/Año	2015	2016	2017	2018	2019	2020	2021
Ene	195	195	195	195	195	195	195
Feb	480,2	480	480,2	480,2	480,2	480,2	480,2
Mar	392,6	393	392,6	392,6	392,6	392,6	392,6
Abr	683,3	683	683,3	683,3	683,3	683,3	683,3
May	511,2	511	511,2	511,2	511,2	511,2	511,2
Jun	919,3	919	919,3	919,3	919,3	919,3	919,3
Jul	485,5	486	485,5	485,5	485,5	485,5	485,5
Ago	345,4	345	345,4	345,4	345,4	345,4	345,4
Sep	189,6	190	189,6	189,6	189,6	189,6	189,6
Oct	332,7	333	332,7	332,7	332,7	352,81	336,722
Nov	301,7	302	301,7	301,7	445,69	330,498	336,2576
Dic	143,7	144	143,7	143,7	143,7	143,7	143,7
Min	143,7	144	143,7	143,7	143,7	143,7	143,7

Tabla 7. Histórico de caudales mínimos de 1960 a 1980 de la estación Automática de Purificación, municipio de purificación.

Mes/Año	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
Ene	262	232	219	156	105	156	168	270	102	116	180	416	447	189	387	331	603	241	205	217	280
Feb	320	218	211	172	88	92	112	336	100	160	204	485	258	166	554	308	484	237	187	188	298
Mar	247	222	183	268	82	85	144	222	168	108	234	399	312	175	538	502	613	237	223	423	298
Abr	361	582	229	148	336	136	258	336	270	406	228	673	315	268	406	426	644	379	640	366	190
May	443	388	324	462	386	633	119	354	276	392	485	625	572	306	511	586	793	424	460	448	496
Jun	484	474	412	373	697	526	108	673	455	264	425	585	513	402	507	814	744	527	430	612	466
Jul	466	572	360	330	560	406	348	455	534	324	399	490	726	373	449	530	750	398	389	512	408
Ago	381	253	246	330	478	462	324	386	366	148	348	513	382	386	455	573	577	363	415	385	343
Sep	320	231	234	216	348	282	168	148	258	210	425	377	444	450	464	582	442	421	398	477	314
Oct	232	304	240	186	234	210	312	198	392	386	336	389	315	405	513	570	451	543	451	428	400
Nov	536	507	294	432	448	534	258	318	270	551	852	517	568	632	500	849	408	590	363	464	335
Dic	222	257	186	294	392	366	860	140	228	306	216	351	180	717	395	766	385	316	309	515	380
Min	222	218	183	148	82	85	108	140	100	108	180	351	180	166	387	308	385	237	187	188	190

Tabla 8. Histórico de caudales mínimos de 1981 a 2000 de la estación Automática de Purificación, municipio de purificación.

Mes/Año	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Ene	225	508	319	471	390	266	257	257	425	442	346	351	313	368	303	309	463	209	478	377
Feb	208	556	305	506	263	290	253	223	433	434	341	346	313	500	240	488	540	186	640	455
Mar	284	615	302	364	219	535	203	241	378	416	425	305	485	425	312	652	395	204	596	455
Abr	302	765	289	482	261	618	245	244	568	483	476	294	387	584	324	516	529	516	922	681
May	701	696	628	522	472	418	471	267	399	749	388	344	622	709	534	634	671	423	637	603
Jun	579	701	377	504	530	641	331	391	594	539	372	357	745	863	479	551	407	416	687	565
Jul	427	589	385	553	518	679	361	445	395	597	497	358	438	563	367	506	419	781	288	431
Ago	414	526	411	458	488	386	253	267	286	509	513	380	355	436	340	405	367	268	252	406
Sep	302	395	313	384	354	325	286	268	288	333	455	316	349	396	292	370	179	271	193	511
Oct	348	435	316	404	376	715	354	261	409	400	333	317	328	393	305	403	158	326	356	380
Nov	442	481	387	777	452	490	452	307	424	414	329	327	496	491	492	430	183	598	580	446
Dic	447	435	417	558	381	426	412	584	286	431	374	332	390	354	408	474	148	464	794	405
Min	208	395	289	364	219	266	203	223	286	333	329	294	313	354	240	309	148	186	193	377

Fuente propia.

Tabla 9. Histórico de caudales mínimos del 2001 al 2021 de la estación Automática de Purificación, municipio de purificación.

Mes/Año	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Ene	268	305	250	393	328	554	403	352	858	155	335	561	245	284	219	168	365	472	369	339	402
Feb	239	213	335	386	341	542	393	277	826	150	318	466	356	379	491	164	452	379	389	300	324
Mar	310	219	353	341	377	335	371	503	832	214	514	499	392	655	331	199	539	411	379	307	367
Abr	412	407	373	386	490	756	536	617	738	225	692	875	268	437	416	265	966	605	485	318	528
May	426	481	487	691	618	550	631	506	351	320	837	363	336	419	379	343	725	635	326	389	484
Jun	418	744	366	624	425	682	735	845	364	330	710	284	272	514	411	442	758	683	389	447	544
Jul	502	418	380	410	431	548	507	817	411	378	580	281	331	410	314	513	564	605	447	455	517
Ago	346	393	337	436	346	365	424	379	354	206	475	352	283	369	252	230	483	337	447	389	377
Sep	290	243	357	337	328	413	419	301	244	260	462	250	281	232	195	235	414	240	402	297	318
Oct	272	283	355	419	421	292	413	387	250	217	597	300	356	210	206	269	444	238	411	302	333
Nov	358	372	486	640	578	623	516	865	226	651	499	416	333	371	207	239	683	357	451	348	416
Dic	506	302	491	461	574	600	508	1066	203	571	665	374	394	283	177	338	659	281	421	382	416
Min	239	213	250	337	328	292	371	277	203	150	318	250	245	210	177	164	365	238	326	297	318

Tabla 10. Histórico de caudales mínimos de 1975 a 1995 de la estación Angostura Automática, municipio de Natagaima.

Mes/Año	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Ene	249	411	230	180	156	246	180	296	251	354	336	300	206	262	337	301	279	279	282	343	360
Feb	259	357	266	172	147	247	222	327	240	355	194	359	196	235	308	296	280	287	302	435	304
Mar	425	413	212	173	317	231	184	428	266	273	194	472	150	231	297	322	312	264	428	412	323
Abr	323	520	360	539	274	425	227	549	249	336	190	492	180	254	417	369	334	268	351	398	298
May	457	685	374	347	420	439	637	413	434	426	339	338	373	288	353	591	325	305	569	567	453
Jun	750	652	507	409	503	403	451	436	342	505	405	481	386	400	526	476	354	360	768	814	470
Jul	411	674	444	270	398	384	355	420	318	592	448	538	499	621	470	552	482	340	433	501	495
Ago	403	471	372	292	305	324	350	430	356	361	396	375	517	319	337	430	541	388	358	397	301
Sep	399	368	393	282	338	284	262	331	270	292	264	343	299	281	431	275	480	277	285	391	277
Oct	437	405	482	385	293	346	330	342	250	385	290	543	312	286	404	303	305	283	274	378	312
Nov	674	380	458	269	325	275	383	331	317	635	240	434	396	323	426	301	304	325	468	382	413
Dic	594	379	305	205	330	313	362	330	342	498	263	401	330	326	308	310	338	312	341	275	329
Min	249	357	212	172	147	231	180	296	240	273	190	300	150	231	297	275	279	264	274	275	277

Tabla 11. Histórico de caudales mínimos de 1996 al 2021 de la estación Angostura Automática, municipio de Natagaima.

Mes/Año	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Ene	299	308	224	320	269	224	275	190	239	299	214	240	246	438	152	299	443	197	201	165	154	309	238	115	183	199
Feb	416	250	227	419	301	235	159	195	270	312	259	230	221	531	129	248	357	243	202	219	174	221	238	172	157	176
Mar	603	300	234	307	526	298	277	212	231	262	248	239	397	606	169	502	378	250	368	178	186	387	238	169	178	232
Abr	406	347	348	678	471	318	286	233	256	313	404	264	464	366	179	679	645	236	216	219	204	319	319	244	186	254
May	466	626	362	464	537	409	253	260	551	236	313	319	407	324	277	802	276	266	255	207	262	294	252	224	186	244
Jun	418	337	400	517	559	456	608	210	526	215	389	413	642	365	476	623	232	250	310	412	313	304	240	268	235	272
Jul	387	518	664	289	456	444	266	220	320	236	343	279	676	383	326	460	220	266	254	233	487	228	269	238	213	287
Ago	320	382	228	331	384	306	273	214	253	213	243	305	345	328	178	334	228	235	251	197	162	215	313	213	192	244
Sep	290	216	272	346	380	256	234	253	236	242	230	315	264	258	223	298	187	200	256	177	154	183	236	183	171	213
Oct	347	213	276	442	380	266	231	229	297	256	230	313	259	232	196	434	216	205	197	166	154	196	126	183	168	264
Nov	279	180	421	467	453	309	192	282	348	286	209	283	489	238	471	348	196	214	271	194	178	231	127	192	204	304
Dic	281	229	294	617	396	321	207	259	339	300	341	230	683	224	393	513	304	231	221	157	186	223	103	226	231	194
Min	279	180	224	289	269	224	159	190	231	213	209	230	221	224	129	248	187	197	197	157	154	183	103	115	157	176

Fuente propia.

Tabla 12. Histórico de caudales mínimos de 1960 a 1980 de la estación Puente Santander, municipio de Neiva.

Mes/Año	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
Ene	176	158	150	158	83	143	171	158	156	146	163	238	237	140	255	173	279	166	158	147	188
Feb	212	149	145	158	74	90	120	176	164	144	173	302	206	132	393	167	249	158	144	137	185
Mar	167	152	128	156	58	96	136	156	59,1	144	225	258	213	131	366	303	360	174	148	211	187
Abr	237	372	156	284	177	136	153	226	215	311	219	302	414	173	382	202	411	272	373	258	337
May	287	252	388	280	158	350	154	166	145	350	334	328	444	188	370	379	471	263	284	293	253
Jun	313	306	417	215	399	340	119	490	474	347	345	314	386	251	326	503	442	357	333	380	312
Jul	301	366	410	190	362	276	199	280	598	359	240	323	534	279	384	308	626	305	251	325	303
Ago	249	232	340	200	309	289	206	311	195	300	298	308	248	286	338	338	437	286	247	250	269
Sep	212	157	159	154	274	158	144	152	266	153	288	207	276	343	325	330	355	343	222	267	235
Oct	158	202	272	129	155	157	178	226	256	335	211	288	202	301	318	331	358	365	264	243	274
Nov	344	326	287	206	159	216	156	152	263	72,1	377	350	363	381	360	500	334	367	208	260	216
Dic	152	173	188	151	175	270	353	150	241	244	228	230	172	388	261	451	269	219	186	249	214
Min	152	149	128	129	58	90	119	150	59,1	72,1	163	207	172	131	255	167	249	158	144	137	185

Tabla 13. Histórico de caudales mínimos de 1981 a 2000 de la estación Puente Santander, municipio de Neiva.

Mes/Año	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Ene	156	230	176	288	249	225	188	210	250	225	211	223	185	238	280	222	271	152	188	199
Feb	151	250	169	288	180	268	178	200	260	228	224	212	224	290	237	224	284	161	293	239
Mar	190	310	231	203	175	393	151	208	227	225	224	127	251	295	251	270	247	162	200	308
Abr	196	370	178	247	177	362	171	211	306	234	222	133	225	307	238	254	253	184	531	335
May	506	300	371	344	251	287	207	253	220	343	214	231	273	415	320	269	382	186	348	278
Jun	337	340	253	337	327	368	306	305	317	327	223	235	280	627	273	221	264	198	355	375
Jul	282	336	243	426	396	436	303	280	273	396	223	251	249	264	268	242	329	353	208	260
Ago	249	380	295	317	331	305	439	223	241	317	280	262	222	265	235	229	276	140	232	276
Sep	222	297	249	261	256	286	272	235	250	186	245	211	206	241	226	227	159	154	217	292
Oct	209	312	215	373	243	410	303	228	235	231	222	217	203	269	233	248	176	164	274	253
Nov	268	263	249	392	217	323	297	245	244	210	218	235	248	250	294	233	175	263	213	203
Dic	248	260	241	349	211	331	245	260	215	220	226	185	221	244	232	247	178	182	347	237
Min	151	230	169	203	175	225	151	200	215	186	211	127	185	238	226	221	159	140	188	199

Tabla 14. Histórico de caudales mínimos de 2001 a 2022 de la estación Puente Santander, municipio de

Mes/Año	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Ene	178	156	142	218	173	185	183	196	327	108	213	386	138,62	148	150	147	145	140	157	110	145	159
Feb	175	192	164	215	117	220	165	197	370	120	166	317	170,93	166	191	147	157	120	145	113	136	157
Mar	208	188	176	204	181	233	160	253	437	139	244	324	150,4	225	169	134	180	157	134	125	204	160
Abr	178	179	177	194	175	235	213	312	239	139	308	303	190,2	147	173	138	180	141	161	130	149	152
May	233	197	199	383	183	173	481	303	226	178	412	207	209,7	210	176	130	163	161	127	130	213	159
Jun	175	309	180	235	175	356	508	443	267	220	288	173	142,7	648	297	242	173	161	149	164	165	162
Jul	226	160	161	201	198	470	393	556	211	242	312	160	210,4	165	172	260	151	145	143	149	140	146
Ago	184	128	167	208	170	446	285	241	252	186	279	185	151,8	165	168	138	153	161	145	140	149	150
Sep	187	103	207	165	179	200	200	206	171	181	229	133	144,3	144	164	132	106	149	134	140	155	137
Oct	157	103	167	189	218	178	224	175	131	171	285	148	147	141	150	134	113	161	132	141	157	141
Nov	171	167	168	175	198	213	194	199	168	412	255	126	152	167	169	140	134	165	132	127	173	146
Dic	194	161	180	176	223	235	199	398	109	299	306	159	153,8	145	160	143	145	153	127	141	165	146
Min	157	103	142	165	117	173	160	175	109	108	166	126	138.62	141	150	130	106	120	127	110	136	137

Neiva.

Fuente propia.

Tabla 15. Histórico de caudales máximos de 1960 a 1979 de la estación Arrancaplumas, municipio de Guaduas.

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
Ene	2827	1215	1368	1313	1192	1328	1505	1504	1082	1200	1300	3095	2862	547	2136	1144	1878	798	1009	1566
Feb	2512	1565	1262	2512	633	996	880	1383	2031	1030	1225	2196	1765	632	3517	2120	2420	1375	1095	1000
Mar	1878	1752	1878	1565	768	1278	1427	1957	2031	1475	1450	3637	2677	901	2638	3556	4048	1532	2322	2269
Abr	2031	3063	2430	2512	2340	3115	2196	2351	2985	3875	1814	4178	3342	1559	3741	2141	3692	1912	3360	4549
May	2512	1878	2827	3617	1593	3947	1427	2512	2180	3375	3900	3775	3541	2290	4056	3382	3996	1930	3271	3643
Jun	2351	2430	2746	2031	3044	2120	2031	2934	2985	3010	1879	2445	1970	1658	2120	3443	3070	2071	2935	2884
Jul	2351	2512	2430	1565	2195	2468	2031	2196	3461	2050	1825	2965	3434	2275	2735	2912	3116	1858	1659	2158
Ago	2351	1427	2666	2031	2171	1560	1565	2445	2985	1675	2150	1678	1900	3020	2100	2105	2400	1656	2338	1918
Sep	1795	1085	1169	1262	1790	1227	1313	931	1723	1500	1694	1518	1465	2678	2131	2661	1931	1768	2060	2048
Oct	2746	2436	2985	1720	1420	2425	1878	1720	3145	3350	3850	2320	1856	2872	2960	4133	2575	2525	2010	2912
Nov	2827	3323	3063	3617	2010	3617	3546	2985	2196	3350	3220	3063	2761	3807	3807	4140	2700	2925	2132	4210
Dic	3456	1978	1878	1368	1200	2469	3875	1565	1945	2278	3001	2486	1945	3220	3902	4496	1605	1665	2500	1781
Max	3456	3323	3063	3617	3044	3947	3875	2985	3461	3875	3900	4178	3541	3807	4056	4496	4048	2925	3360	4549

Tabla 16. Histórico de caudales máximos de 1980 a 1999 de la estación Arrancaplumas, municipio de Guaduas.

	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Ene	1233	1760	3249	2019	3026	1253	1922	1077	1144	2948	1330	1829	1078	1174	1535	650	2353	3202	808	2661
Feb	1968	1932	2476	1225	2230	780	2797	1146	1087	2870	1418	1280	1110	1925	1895	652	2650	1850	905	4083
Mar	1145	2081	2514	1984	2310	841	2913	837	1197	3576	1933	1994	943	2447	2609	1733	3360	1890	1270	3579
Abr	1912	3389	4330	3592	3238	1969	3417	2015	2336	2282	2690	2540	1280	3089	3500	2740	3178	2633	2128	4345
May	1848	4049	4173	3222	3270	2845	3206	2888	2012	2846	3020	3116	1680	3373	3287	2381	3634	2306	3056	3365
Jun	3152	3395	2505	1984	2840	2520	2919	1480	2900	2594	2150	1955	1150	2014	2715	2412	3402	1856	2001	2584
Jul	1784	2120	2665	2081	2466	2038	2983	1755	2810	2954	2180	1763	2038	1842	2689	1899	3053	2714	2046	2087
Ago	1694	1648	2186	2390	2186	2046	1376	2689	2270	1166	1647	2480	1465	1359	1617	1844	1590	1374	1850	1678
Sep	1281	1388	1670	1183	2670	2046	1976	1049	3008	2120	1190	1911	1195	1077	1756	1444	1193	937	1370	2642
Oct	2396	2063	3206	1832	2943	2830	3718	3521	2228	2528	2360	1790	845	1512	2058	1853	2778	1152	2485	4120
Nov	2182	2932	1904	1512	4012	3328	3410	3491	3614	2240	3904	2720	2120	3017	2662	2104	2479	1383	2475	4360
Dic	1712	2917	2248	2620	3036	2320	1217	2559	4556	1602	2840	2054	2480	3559	2132	2100	2964	1112	2523	3294
Max	3152	4049	4330	3592	4012	3328	3718	3521	4556	3576	3904	3116	2480	3559	3500	2740	3634	3202	3056	4360

Tabla 17. Histórico de caudales máximos del 2000 al 2014 de la estación Arrancaplumas, municipio de Guaduas.

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Ene	1935	1219	1247	1044	1440	1467	1923	1166	2112	2689	646	2138	1984	1105	1650
Feb	2028	1439	867	1044	2049	2645	1414	737	2694	2151	655	1834	1724	2006	1300
Mar	2366	2472	1964	1843	987	1671	2235	1663	2645	3186	877	3024	1984	1812	1834
Abr	3005	1366	2783	2706	2360	1714	2996	3241	3078	3509	3349	5086	3029	1599	2601
May	2948	2142	2920	1497	2414	2543	3165	2543	3970	2349	3360	3491	2023	2504	2514
Jun	2451	1807	3192	1695	2112	1825	2376	2509	2635	1906	2213	3105	1429	1821	1953
Jul	2360	1678	2018	1384	1485	1319	2001	2045	2499	1658	3230	1761	1327	1581	2134
Ago	1667	1194	1857	1597	1354	1474	1151	1519	2698	1331	1654	1971	1463	1380	1650
Sep	1517	1916	1624	1384	1312	1133	1243	1243	2151	1098	1791	1342	1391	1151	1399
Oct	2478	1112	2660	2619	2067	2460	1577	2465	2519	1658	1834	2213	2138	1216	1459
Nov	2560	2220	2072	2815	2847	2402	3067	2844	4511	1531	3557	2684	1966	1774	1945
Dic	2399	2891	2180	2578	2112	2261	2422	2810	4024	1069	3587	3339	1825	2451	1893
Max	3005	2891	3192	2815	2847	2645	3165	3241	4511	3509	3587	5086	3029	2504	2601

Fuente propia.

Tabla 18. Histórico de caudales máximo de 1978 a 1997 de la estación Automática de Nariño, municipio de Nariño.

	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ene	854	1408	1151	1539	3340	1815	3164	1105	1736	998	961	3490	1367	1719	1451	1010	1512	817	1815	3277
Feb	846	866	1827	1668	2268	1214	2074	748	2436	1165	1034	2800	1389	1193	1001	2055	1850	660	2535	1891
Mar	1615	1956	1288	1801	2551	2004	2505	710	2821	825	1130	3496	1850	2906	914	2832	2914	1772	3391	1878
Abr	3232	4009	1880	3532	4390	3892	3510	1873	3432	1787	2100	1994	2389	2106	1310	4348	3856	3092	3265	2421
May	3108	3606	1732	4141	4830	3042	3063	3184	3133	2740	1418	2568	2560	3107	1514	5145	3439	2396	3380	1954
Jun	2689	2598	3108	3160	2480	1783	2610	2557	2896	1423	2586	2495	2044	1724	1035	2145	2760	2482	2890	1802
Jul	898	1966	1859	1988	2740	1926	2312	2078	3033	1835	2696	2956	2072	2011	1925	1550	2788	1909	2919	2697
Ago	2150	1769	1689	1096	1960	2445	2022	1960	1449	2358	2393	1115	1256	2226	1456	1251	1556	1675	1602	1344
Sep	898	1859	1206	1278	1652	898	2536	1623	1902	998	2495	1239	1172	1471	1201	990	2091	1357	1109	902
Oct	898	2374	2362	1966	3016	1387	3088	2741	3337	3165	1925	2106	2157	1614	848	1196	2075	1920	2502	1072
Nov	1160	4126	1880	2984	1810	1335	4392	2946	3171	2425	3645	1965	3309	2518	2074	5435	2956	2330	2231	1207
Dic	2209	1710	1440	2773	2038	2919	2410	1919	1136	2341	4423	1429	2302	1968	2124	5102	2153	1983	2515	1124
Max	3232	4126	3108	4141	4830	3892	4392	3184	3432	3165	4423	3496	3309	3107	2124	5435	3856	3092	3391	3277

Tabla 19. Histórico de caudales máximo de 1998 a 2017 de la estación Automática de Nariño, municipio de Nariño.

	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Ene	915	2572	1410	1099	1233	816	1425	1308	1792	1122	2061	2690	829.5	1995	2065	1220	1693	1117	861,55	2004,4
Feb	919	3720	2661	954	877	954	2225	2909	1620	1018	2690	1951	850.4	1714	1958	2381	1320	1725	783,5	1687
Mar	1190	3368	3250	2160	1925	1877	765	1599	2263	1396	2640	3176	1229	3116	2097	1865	1940	1893	1191,5	3155,8
Abr	2068	4013	2633	1284	2371	2700	2331	1355	3272	3354	2706	3715	3507	4370	3537	1775	2586	1902	1274	2879,4
May	3130	3088	3434	1978	2826	1331	2182	2435	3142	2107	4206	2223	3603	3585	2262	2478	2626	1422	1946,8	4161
Jun	1945	2150	2170	1589	3008	1516	1845	1589	2274	2515	2284	1818	2271	2945	1558	1693	1916	2591	1416,2	1431,8
Jul	1967	1840	1425	1476	1903	1331	1401	1327	1803	1762	2482	1692	3243	1680	1571	2037	2291	1916	1480,9	1353,8
Ago	1440	1675	1590	1284	1861	1589	1467	1238	1158	1353	2157	1405	1616	1888	1648	1470	1720	1404	1175	1095,2
Sep	992	2599	1640	1693	1261	1341	1169	1132	1162	1102	2061	1200	1709	1182	1662	1233	1514	791.4	1597,25	1246,0
Oct	2247	3711	2191	898	2903	2915	2090	2106	1515	2668	2363	1655	1788	2144	2405	1233	1580	1151	1525,65	1526,3
Nov	2348	3066	2862	1877	2047	2927	3049	2493	2722	2450	4890	1200	3687	3235	2343	2181	1958	1452	1606,2	1898,8
Dic	2505	2913	1760	2772	1914	2640	2085	2610	2363	2499	4300	1166	3669	3775	2200	2849	2238	984.9	1642	1696
Max	3130	4013	3434	2772	3008	2927	3049	2909	3272	3354	4890	3715	3687	4370	3537	2849	2626	2591	1946,8	4161
Fuon	to nro	nio																		

Tabla 20. Histórico de caudales máximo de 2018 a 2021 de la estación Automática de Nariño, municipio de Nariño.

	2018	2019	2020	2021
Ene	1870	851,4	1188,9	1355,24
Feb	1597,3	641,2	1352,3	1212,25
Mar	1813	654,5	1422,7	1647,51
Abr	2244,3	1238,7	1481,4	1823,56
May	1927,6	1061	1308,8	2081,04
Jun	1597,3	1049,4	1060,8	1311,09
Jul	1651	930,8	1701,4	1423,58
Ago	1507,8	1128,9	2586,2	1498,60
Sep	2078	975,63	1104,13	1400,22
Oct	1580,2	900,64	1159	1338,36
Nov	1493,2	2049,4	1416,86	1692,89
Dic	1670.6	1208,9	2828,63	1843,87
Max	2244	2049	2829	2081

Fuente propia.

Tabla 21. Histórico de caudales máximos de 1960 a 1979 de la estación Automática de Purificación, municipio de purificación.

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
Ene	2408	1315	939	1050	1780	1720	1580	1650	1710	1000	1360	3220	1720	287	1419	850	1286	965	542	832
Feb	1681	1116	1223	2560	1050	580	930	1620	2450	1320	2200	2320	1200	375	4099	1307	1914	825	654	566
Mar	750	1587	1066	1125	800	1210	2220	2020	1800	1705	2170	3390	2068	706	1936	2255	2494	974	1016	1635
Abr	962	2099	1170	2010	2330	2690	1600	2460	2510	3050	2160	4010	2288	958	2660	1368	2540	1445	2310	2460
May	1796	1769	2520	3190	1780	2920	1210	2000	2240	2730	3420	3210	2343	1389	1936	1903	2576	1378	1687	1936
Jun	2073	4006	2760	2400	3350	2040	1900	3160	2170	3090	2520	1890	1300	1065	1784	2068	2437	1227	1481	2024
Jul	2016	2476	2560	1830	2520	2580	2520	2690	3750	2780	2040	3200	3634	1655	2830	1687	3268	3978	957	2013
Ago	2180	1680	3000	2560	2490	1680	2060	2900	2360	2010	2840	1540	1380	1741	1751	1687	2035	889	2299	1399
Sep	1559	1002	1706	1210	1660	1210	1790	1130	1790	1540	2190	1580	1110	1327	1105	1348	1470	1161	787	1378
Oct	1825	1326	2950	2250	1470	2220	1340	1850	3040	3380	2820	1890	968	1450	1741	1980	1389	1642	987	1553
Nov	1326	1946	2290	3280	1810	3240	2770	2740	2380	3010	3130	2700	2222	2517	2255	2402	1358	2022	1035	2843
Dic	764	1043	1610	1810	1790	2580	3020	1720	2010	2320	2950	2550	1590	2288	2793	4186	987	1172	1698	1255
Max	2408	4006	3000	3280	3350	3240	3020	3160	3750	3380	3420	4010	3634	2517	4099	4186	3268	3978	2310	2843

Tabla 22. Histórico de caudales máximos de 1980 a 1999 de la estación Automática de Purificación, municipio de purificación.

	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Ene	941	1006	2615	1333	2758	765	1267	902	1479	3239	983	1510	1585	724	1211	926	1244	1849	1186	2201
Feb	1132	1095	1941	908	1430	629	1735	734	870	2095	1130	708	952	1504	1211	533	1824	1055	1085	3234
Mar	1512	1348	2036	1169	1127	648	1929	670	735	3319	914	1520	904	2824	1512	1114	1950	964	1587	3191
Abr	1687	1784	3028	2404	2023	1349	1996	862	878	1538	1253	1500	730	1781	2661	1622	1454	1189	1621	2794
May	1430	2200	3374	1916	2153	1498	1551	1769	698	2135	1859	1680	783	2413	1887	1688	1500	1079	1953	1914
Jun	2167	2552	1691	1040	2185	1568	2097	1354	1266	1850	1938	1360	685	2107	1710	1333	1397	954	1669	1744
Jul	1838	1773	2256	1793	1461	2037	2209	1250	2423	3305	1859	1340	1403	1690	2112	1074	1838	1702	1662	1077
Ago	1512	918	1421	2028	1165	1474	1129	1726	937	870	1140	1700	1200	1227	1294	1091	1159	997	1155	1291
Sep	987	948	1421	585	1410	1092	1174	654	1110	830	923	1390	857	693	1275	566	976	740	930	2062
Oct	1553	1409	2025	1153	2466	1787	2727	2050	1371	1307	1392	1240	819	956	1417	1138	1831	834	1676	2806
Nov	1430	2277	1208	1067	2423	1809	2781	1542	2933	1328	2226	2305	2020	3102	1458	1418	1428	935	1983	1792
Dic	1358	2277	1304	2465	1662	1521	760	1704	4455	955	1938	1380	2020	2230	1424	2402	1643	770	2033	2251
Max	2167	2552	3374	2465	2758	2037	2781	2050	4455	3319	2226	2305	2020	3102	2661	2402	1950	1849	2033	3234

Tabla 23. Histórico de caudales máximos de 2000 a 2010 de la estación Automática de Purificación, municipio de purificación.

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Ene	1410	1062	1194	1101	1409	1314	1583	1123	1984	1966	725
Feb	1779	992	1157	1094	1967	2287	1465	1072	1851	1678	745
Mar	2052	1607	1555	1827	686	1498	1967	992	2345	2598	790
Abr	1786	1314	1649	1967	2005	1258	2541	3745	2233	2587	1813
May	2102	1150	2140	1164	1150	1705	1322	1729	2731	3163	2139
Jun	1587	1465	2081	1122	1322	1481	1939	2954	1472	1346	1624
Jul	1008	1314	1425	1258	1274	1258	1967	1674	1750	1266	1750
Ago	1257	1179	1555	1449	1282	1202	1115	1220	1266	1087	1134
Sep	1147	1386	1122	2688	1129	1143	1073	1110	1481	1103	1056
Oct	1607	977	1306	2062	1639	1564	1425	2189	1995	1354	1299
Nov	1642	2071	1996	1855	2433	1836	2595	2520	4855	829	2755
Dic	1376	2238	1481	1958	1864	2287	2134	3189	4344	862	2681
Max	2102	2238	2140	2688	2433	2287	2595	3745	4855	3163	2755

Fuente propia.

Tabla 24. Histórico de caudales máximos del 2011 al 2020 de la estación Automática de Purificación, municipio de purificación.

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Ene	1899	1705	1175	1463	1080	862	2004,4	1870	851,4	1188,87
Feb	1225	1544	2267	1025	1299	784	1687	1597,3	641,2	1352,28
Mar	2180	1714	1499	1750	1606	1192	3155,81	1813	654,5	1422,72
Abr	4407	2955	1033	1416	1103	1274	2879,4	2244,3	1238,7	1481,42
May	2657	1159	2118	2423	1323	1947	4161	1927,6	1061,0	1308,81
Jun	2244	1241	1330	1669	2768	1416	1431,8	1597,3	1049,4	1060,78
Jul	1369	1183	1508	2066	1759	1481	1353,8	1651	930,8	1701,4
Ago	1208	1354	1579	1723	1208	1175	1095,2	1507,8	1128,9	2586,16
Sep	966,3	1354	1315	1508	797	1597	1245,97	2059,3	975,6	1104
Oct	1499	1570	1323	1481	875	1526	1526,35	1562,8	900,6	1159
Nov	2622	2334	1889	1678	1134	1606	1898,8	1493,2	2049,4	1417
Dic	4439	2035	2587	1937	907	1642	1696	1516,6	1208,9	2829
Max	4439	2955	2587	2423	2768	1947	4161	2244,3	2049,4	2828,63

Tabla 25. Histórico de caudales mínimos de 1961 a 1980 de la estación Puente Santander, municipio de Neiva.

	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
Ene	878	546	618	682	1098	595,1	646	1025	543	1260	1940	1160	219	1095	838	1074	464	545	406	814
Feb	702	796	1704	575	252	455,7	702	1071	546	1320	1650	807	400	1898	1036	1095	489	697	573	1238
Mar	1117	658	710	437	670	1583	810	1071	444	1040	1780	977	466	1772	1402	2380	690	945	1255	1918
Abr	1568	750	1620	1094	1240	887	965	750	1635	1050	2590	1160	644	1467	933	1424	1276	2120	1936	1744
May	1277	2069	2228	1185	1103	654	1025	1254	1149	1590	1280	1613	1160	1228	1285	2208	1427	1575	1095	1438
Jun	3247	2575	1842	2136	1208	1491	2069	1353	1835	1860	2100	1934	795	1424	2743	2333	1345	1420	1960	2037
Jul	1900	2016	1094	1464	1422	1627	1710	3049	924	1460	3382	2534	1558	2392	1948	2722	1658	1505	1990	1728
Ago	1199	2761	1464	1727	1337	1113	2208	2301	1562	2640	1500	982	1451	1526	1669	2173	1258	2750	1192	1761
Sep	602	1222	575	842	662	1030	630	973,9	583	2510	1300	1018	1212	912	1260	1239	1370	777	1180	1157
Oct	887	1469	1135	622	947	662	753,8	1103	1043	1760	1380	489	1090	1030	1291	1030	1427	1084	1180	1404
Nov	1433	1080	1272	718	1286	1390	1208	1066	970	1540	1450	1270	1202	1616	1408	1122	1602	939	1398	613
Dic	638	773	1254	646	997	1533	887	846	1291	1110	1720	803	1413	1106	1359	822	863	1014	1145	901
Max	3247	2761	2228	2136	1422	1627	2208	3049	1835	2640	3382	2534	1558	2392	2743	2722	1658	2750	1990	2037

Tabla 26. Histórico de caudales mínimos de 1981 a 2000 de la estación Puente Santander, municipio de Neiva.

	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Ene	584	1960	1037	1681	680	829	366	655	1605	513	962	938	789	866	541	872	1618	778	2045	1086
Feb	1067	1180	895	1050	501	862	268	761	761	778	590	794,5	872	968	685	1653	1066	956	2514	1275
Mar	771	1440	1293	905	410	1202	310	783	1556	854	812	778	908	1450	501	1926	938	1131	1331	1275
Abr	1209	1375	2078	1460	1034	928	576	888	877	866	1380	756	818	2486	1289	1268	992	968	1240	1359
May	1307	2380	1330	1590	1205	884	1132	789	1696	1464	854	756	884	1884	884	1131	998	968	1040	1968
Jun	1163	1245	1191	1512	1389	1430	1144	855	1710	1730	1275	505	854	1730	944	932	944	1345	1040	1164
Jul	1559	2450	1637	1434	1706	1658	1318	2165	3018	1681	1373	836	902	1926	956	1870	2094	1053	1010	1040
Ago	1078	923	1748	1180	1143	950	1800	761	781	968	1513	878	872	1310	800	1240	980	836	1004	1170
Sep	987	1090	632	828	828	1010	988	849	786	872	1408	818	545	1506	595	1040	866	980	842	1016
Oct	1180	1120	1318	1967	675	1418	1636	1139	858	1226	896	795	980	1118	521	1632	1053	1422	1016	1004
Nov	1272	1102	610	1205	1241	1202	1108	1949	1391	896	884	745	1282	800	1028	896	1060	1338	992	1131
Dic	1157	1382	1191	1280	640	453	700	1829	764	1492	1138	690	1144	1289	1016	992	998	1004	1282	1170
Max	1559	2450	2078	1967	1706	1658	1800	2165	3018	1730	1513	938	1282	2486	1289	1926	2094	1422	2514	1968

Fuente propia.

Tabla 27. Histórico de caudales mínimos de 2001 a 2000 de la estación Puente Santander, municipio de Neiva.

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Ene	1040	1105	968	1118	980	1338	956	1131	1954	729	1066	1604	760	925	791	1029	1418	821	851	872	998
Feb	950	998	962	1040	1730	1053	902	1345	1170	707	860	1205,0	1646	565	953	1046	1038	925	641	1021	934
Mar	1004	824	1151	521	1079	1144	325	1772	1534	784	1408	980,6	925	947	1049	1062	1377	883	655	1170	1029
Abr	1004	1212	1198	1060	1105	1653	818	1576	1604	1303	2500	1741	909	826	655	1326	1091	893	1239	1041	1245
May	1016	1296	950	986	1092	1028	1464	1723	1359	1597	2633	867	1003	1630	931	1413	1868	862	1061	1227	1120
Jun	1066	1450	1004	1060	1170	1366	1408	1164	1464	1151	2080	1003	953	893	2025	1391	925	862	1049	1250	1096
Jul	1016	1254	1092	1112	1170	1730	926	1345	1086	1125	1646	936,2	1252	1439	1044	1263	877	893	931	1002	993
Ago	1053	1464	1170	1066	1086	980	712	1144	1079	1112	1092	1220	969	1170	1015	1093	893	893	915	962	951
Sep	1092	1028	1170	1086	1016	1066	1079	1170	1099	1112	767	963,8	975	893	791	878	851	888	640	810	813
Oct	1028	1004	1170	1079	712	1040	1170	1366	1085	1233	1170	941,6	942	986	650	938	841	947	846	844	883
Nov	1125	1112	1079	1471	1198	1112	1205	1541	784	1380	1793	1003	1132	1038	695	1132	893	830	1151	940	989
Dic	1144	992	1345	1086	1157	1079	1989	1905	690	1282	2752	947	1003	997	719	1284	975	936	909	964	1014
Max	1144	1464	1345	1471	1730	1730	1989	1905	1954	1597	2752	1741	1646	1630	2025	1413	1868	947	1239	1250	1245

Tabla 28. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Máximos. 1 dato faltante.

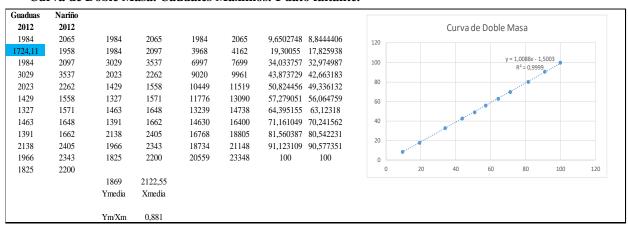
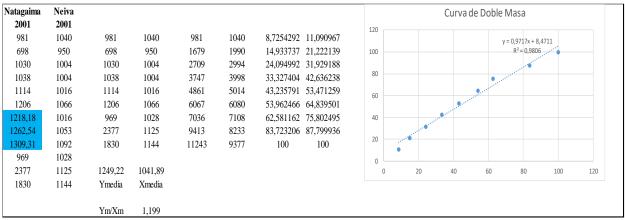



Tabla 29. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Máximos. 3 datos faltantes.

Fuente propia.

Tabla 30. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Máximos. 2 datos faltantes.

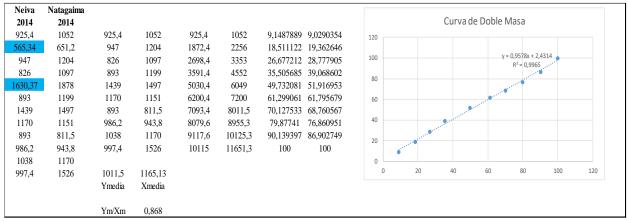


Tabla 31. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Mínimos. 1 dato faltante.

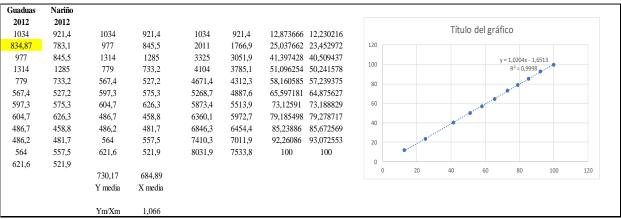
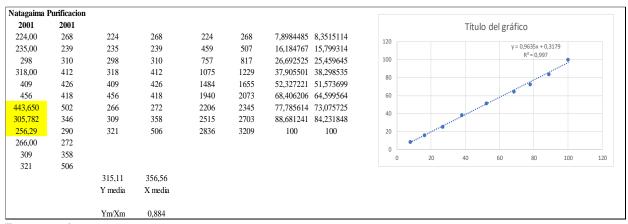
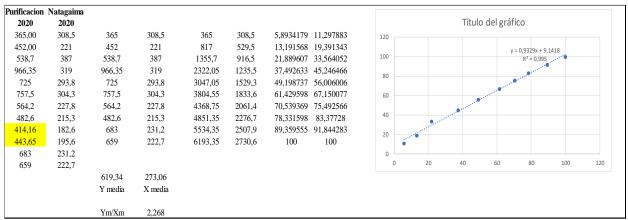




Tabla 32. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Mínimos. 3 datos faltantes.

Fuente propia.

Tabla 33. Ejemplo cálculo de datos faltantes por el método de promedios para series estocásticas con Curva de Doble Masa. Caudales Mínimos. 2 datos faltantes.

